FPGAs: The Key to Accelerating High-Speed Storage Systems

Salil Raje
Executive Vice President & GM
Xilinx Data Center Business

SSDs Have Been a Game Changer for Storage

Data Filtering

Hadoop Spark Aerospike RocksDB Cassandra Foundation DB © Compression GZip

Continuously Evolving Standards

Decompression •

LZ Brotli Zipline DES AES-XST SHA1-256 Block chain

zSTD

LZ

Huffman

Zipline

Brotli

Encryption

Bottlenecks Remain for Data Intensive Applications

Processor-centric architecture

Emergence of Computational Storage as the Solution

Computational storage architecture

Growing Industry Momentum for Computational Storage

How FPGAs Address the Computational Storage Problem

FPGAs in Storage Today

> Flash controllers

- > Storage Systems
 - >> Cache-offload
 - Storage System & Switching connectivity
 - Data Reduction

>> 9

FPGA Advantages for Computational Storage

- > Flexible, fully customizable architecture adapts to specific applications
 - >> Massive parallelism, I/O and customizable data path
- Performance, power and latency of dedicated HW + reconfigurability of SW
- > More economical than ASIC/ASSP for many applications

FPGA Advantages for Changing Standards

Architecture easily adapts to latest compression algorithms

Example of Analytics Acceleration

Q1: "Which cities originate the most flights with >10min delays?

Q2: "Which airport in the Bay Area has the worst record?

Airline traffic in the USA from 1970 to Present

Flight Data — 1.2B Entries

Airport Data — 500M Entries

Planes Data — 700M Entries

Data Lake

Example of Line Rate Hadoop Compression Acceleration

The challenge: Ingest real-time retail sales data during peak shopping seasor

CPU can't keep up with line-rate data ingestion making compression impractical

Intel Skylake-SP 6152 @2.10GHz CPU (Ubuntu 16.04)
GB/s compression per CPU core = .0229. Alveo U50 =

FPGA-based Data Compression Enables Server Consolidation

Without Compression Acceleration

2x Dual CPU ServersWith 192TB (uncompressed)

With FPGA Compression Acceleration

Single Socket Server
2x Accelerators, 96 TB (compressed)

50% Reduction in Nodes 40% Lower Cost

Computational Storage Deployment Options

Computational Storage Drive (CSD)

Integrated Accelerator and Flash

> Benefits:

- >> Easy to implement plug & play
- Adding capacity adds accelerators + performance
- >> Ability to optimize BW between accelerator and flash
- >> Ability to customize FTL for specific workloads

> Vendors at FMS:

- Samsung
- Scaleflux

Computational Storage Processor (CSP)

- > Accelerator and Storage on same PCIe subsystem
- > Benefits:
 - >> SSD vendor independence
 - >> Plugs into standard slot
 - PCIe peer-to-peer transfers for high bandwidth and low latency
- Vendors at FMS:
 - Bittware
 - Eideticom
 - >> Xilinx

Computational Storage Array (CSA)

- > Accelerator in-line with storage
- > Benefits:
 - SSD vendor independence
 - >> Independently scale accelerators and SSDs
 - Ability to optimize BW between accelerator and SSDs
- Vendors at FMS:
 - Bittware

Future Directions

Current Data Center Architecture:

Fixed Resources, Sub-optimal Utilization

Ethernet													
		X.	X			X				X			
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
•	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel
	SSD	CPU	Accel			SSD	CPU	Accel			SSD	CPU	Accel

Future Data Center: Disaggregated and Composable

Challenge: Reduced Bandwidth and Increased Latency

Introducing Composable Storage Acceleration

- Enables composability without significant performance penalty
- > Benefits
 - Performance and latency benefits of computational storage
 - Scale compute / storage independently
 - >> Higher density per rack
 - >> Lowest TCO
- Vendors at FMS:
 - >> Xilinx

Future DC: Composable + Adaptable Computational Storage

Reduced network traffic

Ethernet

- > Moves some compute next to the data
- Network traffic reduced
- Latency improved
- Higher utilization with composable infrastructure

Future DC: Composable + Adaptable Network Acceleration

Ethernet

- > Enables low latency high bandwidths acceleration of network interface workloads
- > Enables significantly higher packets per second
- Offloads network functions from the CPU

Future DC: Composable + Adaptive Compute Acceleration

Ethernet

- Customizable acceleration up to 100x faster than CPUs for:
 - >> Video transcoding
 - ML inferencing
 - Financial modeling
 - **>>** ...

Future DC: Composable + Distributed Adaptive Acceleration

FPGAs are Key to Accelerating High-Speed Storage Systems

Computational storage addresses a broad range of application bottlenecks

Offers data center operators >5x performance boost and up to 2x reduction of TCO

Xilinx is leading the way in distributed adaptive acceleration

Computational Storage in Action

- > Visit Xilinx in booth 313
- > Visit our partners
 - Alpha Data, Bittware, Burlywood, Codelucida, GigalO, Echo Streams, Eideticom, Everspin Technologies, IP-Maker, Mobiveil, Pliops, PLDA, Scaleflux, Smart IOPS, Samsung, SMART Modular, Toshiba Memory America, Western Digital
- > Visit our Computational Storage microsite

www.xilinx.com/computational-storage

Join SNIA working group for Computational Storage

Adaptable. Intelligent.

