

INVT-202A-1: Handling the Network Requirements of High-Speed NVMe SSDs

Manoj Wadekar, Storage Engineer, Facebook Rob Davis, VP Storage Technology, Mellanox

Typical Hyperscale Server Infrastructure

Databases for Hyperscale

Scale-Up (vertical Scale-Out (horizontal **SQL** Databases Non-SQL Databases scaling): scaling): Key-Value Column-Family Relational More RAM More CPU Graph Document Analytical (OLAP) More HDD Commodity Hardware

Open Source Software

Open Hardware: E.g. OCP

Ref: https://github.com/UWCoffeeNCode/resources/wiki/SQL-and-NoSQL-Databases

- Local attached storage
- Static binding
- Stranded capacity, IOPS
- Inefficient, increased TCO

- Logical disaggregation
- Consumes physical or logical block devices
- Dynamic binding based on workload requirements
- Efficient, improved TCO

- Target Operating System Hardware PCIe JBOF
- Physical disaggregation
- Static binding
- Shared resources
- Target can expose physical or logical devices

Storage Disaggregation

Flash Memory Summit

Remote storage Service

Remote Block Storage

Client Node (Initiator)

Storage Target Node

- Enables sharing of NVMe flash storage over network
- Can use traditional block protocols (e.g. iSCSI) or NVMe optimized protocols (e.g., NVMe/TCP)
- NVMe over Fabrics supports multiple transports, extends NVMe efficiency over network
 - Poll and interrupt mode architecture
 - Kernel and user mode implementations

Remote Block Storage: OCP HW

25 Gbps >= 100 Gbps

- <u>FB Lightning</u> supports 30 M.2 NVMe SSDs
- Storage can be accessed over Ethernet using <u>Tioga</u> <u>Pass server</u>

- Disaggregation
- Multi-tenant access
- High bandwidth applications

•

100s Gbps

- Link Latency
- Stack Latency
- Number of hops
- Queuing
- Congestion

•

100s Gbps

Storage Disaggregation important for hyperscale efficiency

- It depends on high performance network
- Is Ethernet Ready?

Ethernet is Ready!

Ethernet Technology Roadmap

We Need Network Speed for Flash!

High Performance Networking is Here Today

End-to-End 25, 40, 50, 100, 200GbE and soon 400Gb

But High Bandwidth is Only Part of the Solution

- We also Need Low Latency
- Effective Performant Network
 Congestion Control
 - Flow 1
 No 005

 Flow 2
 No 005

 Flow 3
 QOS

 Flow 1
 QOS

 Flow 3
 QOS

- QOS
- Security

Flash Memory Summit 2019 Santa Clara, CA

Importance of Latency with Flash Storage

Intelligent Cut-Through Reduces or Eliminates Store & Forward Latency

0111111110110000

Downlink to Downlink Full Cut-Through

Uplink to Downlink Full Cut-Through Downlink to Uplink Smart Store and Forward

Intelligent cut-through also reduces network congestion

Latency is Not Only About the Hardware

Latency is Not Only About the Hardware

Latency is Not Only About the Hardware

Effective Performant Network Congestion Control

Switch Buffer Size and Congestion

Retries

Fairness in Switch Architecture

All ECN is Not Equal

Santa Clara, CA

Reduce the Data Before Sending

Quality of Service (QOS)

- A fully shared buffer architecture is best for implementing effective QOS
- The QOS algorithm must adapt the bandwidth allocation to the incoming priorities at wire speed

Adaptive Flow Prioritization

- Egress flow prioritization
- Short flows get benefits
- Reduce flow completion
 time

Standard Queueing

Adaptive Flow Prioritization

Elephants and Mice

- Majority of flows in the datacenter are small – Mice Flows
- Majority of packets belong to a few large flows – Elephant Flows

Security

Isolated Fibre Channel SAN

No Longer Isolated Storage

Santa Clara, CA

Management

Normal Operation is Not the Issue

The Answer is Automated Telemetry Capture and Analysis

Successful analysis of the telemetry data...

...leads to root cause

What is Telemetry?

The Important Questions

- ✓ WHO is being impacted
- ✓ WHEN it happened
- ✓ WHAT is causing the problem
- ✓ WHERE is the problem
- ✓WHY it is happening

Telemetry is an automated communications process by which measurements and other data are collected at remote or inaccessible points and transmitted to receiving equipment for monitoring and analysis.

Telemetry Tell "What Just Happen?"

Questions?

Thank You!