

Accelerating Converged System Performance with FPGA-Based Switches

Quinn Jacobson Strategic Architect Achronix

Acknowledgment

Achronix Data Acceleration

This represents work done by many people within Achronix, especially from the Strategy and Planning organization

Motivation

- Data center storage demand is growing exponentially •
 - Capacity, bandwidth, flexibility •
- Storage moving out into the network
 - NVMe-oF, FC-NVMe
- Computational storage gaining momentum
 - Moving work from the server to storage

Network and Storage Convergence

- Look for opportunities to optimize in the evolving storage ecosystem
- To continue TCO scaling, requires holistic approach

System Architecture

Opportunities for Optimization

- NICs
 - More work offloading from server processors to NIC
- Network switches
 - Opportunities while all the data is moving through
- Storage nodes
 - More computational capacity
 - Move work to the data

FPGAs for Dataplane Acceleration

- FPGAs provide a flexible building block for dataplane accelerators
 Input/Output
 - Efficient direct dataflow pipelines
 - Reconfigurable and upgradeable
 - Partial reconfiguration for loading accelerator cores on demand

Line rate dataplane acceleration available throughout the system

Challenges for FPGAs to Meet

- Networking capacity
 - Many high-speed Ethernet links
- Connectivity to host and storage
 - Multiple PCIe Gen 5 connections
- Ability to move bits around efficiently
 - Keep up with these massive pipes

Architecting an FPGA+

- Achronix has developed a new family of FPGAs
 - Leveraging TSMC's new 7nm technology
 - Multiple PCIe Gen5 ports (768Gbps PCIe bandwidth)
 - 4 x 400G or 16 x 100G Ethernet (1.6Tbps Ethernet)
 - 16 GDDR6 memory channels (4Tbps DRAM)

Network-on-chip (NoC) to tie it all together

FPGA NoC for Converged Solutions

Achronix Speedster7t

- Large contiguous FPGA core
- Dedicated controllers for high-speed connections
- Tied together with NoC
 - Packet based
 - Independent of FPGA routing fabric

FPGA NoC for Converged Solutions

2-Dimensional NoC

- Outer ring for traffic not involving FPGA
- Inner 2D mesh with 160 access points into the FPGA fabric
- 20Tbps bisectional bandwidth

Enabled by FPGA with efficient on-chip bandwidth to keep up with line rate scaling throughout the entire system

- Need efficient dataplane acceleration throughput
- FPGAs can enable the next generation of converged solutions

