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BOUNDED Storage and Compute resources on Hadoop Nodes brings challenges

Data/Capacity 

Upgrade Cost

Space, Power, Utilization

Multiple Storage Silos

Inadequate Performance

Typical Challenges

Costs

Provisioning and Configuration 

Performance 
& efficiency

Data Capacity Silos

Challenges of scaling Hadoop* Storage
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*Other names and brands may be claimed as the property of others.



Discontinuity in bigdata infrastructure makes 

different solution
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Get a bigger cluster

for many teams to share.

Give each team their 

own dedicated cluster, 

each with a copy of 

PBs of data.

Give teams ability to

spin-up/spin-down

clusters which can

share data sets.

SINGLE LARGE CLUSTER MULTIPLE SMALL CLUSTERS ON DEMAND ANALYTIC 

CLUSTERS



Cloud based Bigdata Analytics Market Trend  

• IDC No.1 Big Data and analytics predictions 

• Through 2020, spending on cloud-based BDA technology 

will grow 4.5x faster than spending for on-premises 

solutions [1]

• FORRESTER: Public cloud adoption is the No. 1 priority for 

technology decision makers investing in big data.[2]

• Cloud-based big data services offer all the same benefits 

associated with other public cloud services.

• Agility, Flexibility, access data from everywhere, easy 

provisioning and management, cost benefits.

• Well suited for BDA for scalability 
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Source: IDC FutureScape: Worldwide Big Data and Analytics 2016 Predictions

Source: https://www.oracle.com/webfolder/s/delivery_production/docs/FY16h1/do

https://www.datamation.com/cloud-computing/public-cloud.html
https://www.oracle.com/webfolder/s/delivery_production/docs/FY16h1/do


Benefits of bigdata analytics on the cloud 

Independent scale 
of compute and 

storage

• Rightsized HW for 
each layer

• Reduce resource 
wastage

• Cost saving

Single copy of data

• Multiple compute 
cluster share 
common data 
repo/lake

• Simplified data 
management

• Reduced 
provisioning 
overhead

• Improve security 

Agile application 
development

• In-memory 
cloning

• Snapshot service

• Quick & efficient 
copies 

Hybrid cloud 
deployment

• Mix and match 
resources 
depending on 
workload nature 
and life cycle 

Simple and flexible 
software 

management

• Avoid software 
version 
management 

• Upgrade compute 
software only 
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Bigdata analytics on the cloud ecosystem
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Hadoop Compatible File System abstraction layer: Unified storage API interface Hadoop fs –ls s3a://job/
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Performance Gap
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Architectures – Storage Disaggregation
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Shared Data Lake

Batch Streaming Interactive Machine Leaning
Graph 

Analytics

Replace HDFS with Shared data lake



*Other names and brands may be 
claimed as the property of others.

Performance gaps: System configurations
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5x Compute Node
Hardware:
• ntel® Xeon™ processor  Gold 6140 @ 

2.3GHz, 384GB Memory
• 1x 82599 10Gb NIC
• 5x P4500 SSD (2 for spark-shuffle)
Software:
• Hadoop 2.8.1
• Spark 2.2.0
• Hive 2.2.1
• RHEL7.3 

5x Storage Node 

• Intel(R) Xeon(R) CPU Gold 6140 @ 2.30GHz, 
192GB Memory

• 2x 82599 10Gb NIC 
• 7x 1TB HDD for Ceph bluestore or HDFS 

namenode and datanode
Software:
• Hadoop 2.8.1
• Ceph 12.2.7
• RHEL7.3 

HDD HDD…

Hadoop
Hive

Spark

LOCAL HDFS

DNS Hadoop
Hive

Spark

Hadoop
Hive

Spark

Hadoop
Hive

Spark

Hadoop
Hive

Spark

CEPH

RGW1 

MON 

7 OSDs

REMOTE

HDFS
Name
Node 

7 Data
Nodes

HDD HDD…

CEPH

RGW2 

7 OSDs

REMOTE

HDFS

7 Data
Nodes

HDD HDD…

CEPH

RGW3 

7 OSDs

REMOTE

HDFS

7 Data
Nodes

HDD HDD…

CEPH

RGW4 

7 OSDs

REMOTE

HDFS

7 Data
Nodes

HDD HDD…

CEPH

RGW5 

7 OSDs

REMOTE

HDFS

7 Data
Nodes

HDD HDD…

LOCAL HDFS
HDD HDD…

LOCAL HDFS
HDD HDD…

LOCAL HDFS
HDD HDD…

LOCAL HDFS
HDD HDD…



Ingest

cluster

ETL

Transfor

mation

cluster

Interactive 

query

cluster

Compute resource pool

Disaggregated 

Storage

Batch

query

clusters

Performance gaps: usage cases

• Simple Read/Write 

• Terasort: a popular benchmark that 

measures the amount of time to sort one 

terabyte of randomly distributed data on a 

given computer system.

• TPC-DS derived tests: 

• Batch Analytics

• To consistently executing analytical 

process to process large set of data. 

• UC11: Leveraging 54 derived from TPC-

DS * queries with intensive reads across 

objects in different buckets 

• I/O intensive queries: selected 9 I/O 

intensive queries from TPC-DS

Kmeans 

• K-means is one of the most commonly 

used clustering algorithms that clusters 

the data points into a predefined number 

of clusters. 

12



Performance gaps
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• Storage disaggregation leads to performance regression 

• Up to 10% for remote HDFS, Terasort performance is higher as usable memory increased 

• Up to 60% for S3 object storage (optimized results, up to 11.5x perf. boost through tunings compared with default parameters) 

• One important cause for the performance gap:  s3a does not support Transactional Writes

• Most of bigdata software (Spark, Hive) relies on HDFS’s atomic rename feature to support atomic writes 

• During job submit, commit protocol is used to specify how results should be written at the end of job 

• First stage task output into temporary locations, and only moving (renaming) data to final location upon task or job completion

• S3a implements this with: COPY+DELETE+HEAD+POST

1.0 1.0 1.0 1.0 
0.9 0.9 
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0.7 
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0.4

0.6

0.8

1.0

1.2

Batch Query (54 quiries) IO INTENSIVE (7 quiries) TERASORT 1T KMEANS 374g

Performance Comparision of Disaggregated analytics storage 

spark(yarn)  +  Local HDFS (HDD) spark(yarn)  +  Remote HDFS (HDD) spark(yarn) +  S3 (HDD)

higher is better



5x Compute Node
• Intel® Xeon™ processor  E5-2699 v4 @ 

2.2GHz, 128GB mem
• 2x10G 82599 10Gb NIC
• 2x SSDs 
• 3x Data storage (can be emliminated) 
Software:
• Hadoop 2.8.1
• Spark 2.2.0
• Hive 2.2.1
• Presto 0.177
• CentOS 7.5

5x Storage Node, 5 RGW nodes(co-located)
• Intel(R) Xeon(R) CPU E5-2699v4 2.20GHz
• 128GB Memory
• 3x 82599 10Gb NIC 
• 1x Intel®  P3700 1.0TB SSD as joural
• 4x 1.6TB  Intel® SSD DC P3520 as data drive
• 1 OSD instances one each P3520 SSD
• CentOS 7.5
• Ceph Jewel

*Other names and brands may be 
claimed as the property of others.

RGW1
OSD1

MON 

OSD1 OSD4…

Kubelet

1x10Gb NIC

RGW2
OSD2

RGW3
OSD3

RGW4
OSD4

RGW5
OSD5

3x10Gb NIC
(ECMP)

Kubelet Kubelet Kubelet KubeletHead
DNS Server
K8s master

Serverless architecture: configuration
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App2 Driver 

Pod

App1 Executor 

Pod

App2 Executor 

Pod

App1 Driver 

Pod

App1 Executor 

Pod

Compute Orchestration 
• K8s 1.11



Serverless analytics Performance

• Spark on kubernetes delivers similar performance compared with spark on yarn

• Compute service in K8s bring some performance loss for terasort, but gain for Kmeans 
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Running Compute Services in K8s brings littlie performance impact for typical SQL workloads 
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 (extracted 54 quiries)

Spark-Sql scala
 (extracted 7 quiries)

TERASORT 100G KMEANS 76G TERASORT 1T KMEANS 374g

Performance Comparision of spark on yarn and K8s with different workloads (Normalized)

spark(yarn)  +  Local HDFS (HDD) spark(yarn)  +  Remote HDFS (HDD) spark(k8s) + Local HDFS (HDD) spark(k8s) +  Remote HDFS (HDD)
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Architecture – IN Memory data accelerator
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Shared Data Lake with s3a object storage

Batch Streaming Interactive Machine Leaning
Graph 

Analytics

Shared Data Lake with s3a object storage

Batch Streaming Interactive Machine 
Leaning

Graph 
Analytics

Provisioned Compute Pool w/ K8s

Shared Data Lake with s3a object storage

Batch Streaming Interactive Machine 
Leaning

Graph 
Analytics

Provisioned Compute Pool

In Memory Data Acclerator

Replace HDFS with disaggregated s3 object 

storage
Compute services in Kurbernetes In Memory Data Acclerator



Persistent Memory and RDMA

• Persistent Memory: 

• PMEM represents a new class of memory and storage 

technology architected specifically for data center 

usage

• Combination of high-capacity, affordability and 

persistence.
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RDMA: Remote Direct Memory Access 

• Accessing (i.e. reading from or writing to) memory on a 

remote machine without interrupting the processing of 

the CPU(s) on that system.

• Zero-copy - applications perform data transfer 

without the network software stack involvement, 

data is being send received directly to the buffers 

without being copied between the network layers.

• Kernel bypass - applications perform data transfer 

directly from userspace, no context switches.

• No CPU involvement - applications can access 

remote memory without consuming any CPU in the 

remote machine.

Picture source: https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture

https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture


Leveraging In memory data accelerator to 

accelerate intermediate data access

• Leverage new HW technologies & products 

that  delivers significant performance 

improvement
• Persistent memory, RDMA, GPU

• Using in memory data accelerator layer to 

accelerate ephemeral data access
• Caching hot data in to shorten I/O stack

• Unifies underlying Filesystem

• Shuffle/spill to AEP improves latency, reduced 

GC

• Columnar format storage optimized for GPU

• It requires a storage and network co-design 

to fully leverage those technologies or HWs

address the bottlenecks
• Optimized libraries to bypass filesystem, avoid 

user space/kernel space context switch
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Applications

Disaggregated 
Storage

Hbase*Ceph*

Resource Mgmt
& Co-ordination

ZooKeeper*YARN*

Data 
Processing 
& Analysis

MR*

Storm*

Parquet* Avro*

Spark Core

SQL* Streaming* Mllib* GraphX*

DataFrame

ML Pipelines

SparkR*

Flink*

Giraph*

Batch StreamingInteractive Machine 
Leaning

Graph 
Analytics

HDFS* OSS*

Acceleration Layer Alluxio* Ignite* Crail* TBD*

…

k8s*

High Speed Networking
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*Other names and brands may be 
claimed as the property of others.

System configurations
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5x Compute Node
Hardware:
• ntel® Xeon™ processor  Gold 6140 @ 

2.3GHz, 384GB Memory
• 1x 82599 10Gb NIC
• 5x P4500 SSD (2 for spark-shuffle)
Software:
• Hadoop 2.8.1
• Spark 2.2.0
• Hive 2.2.1
• RHEL7.3 
• Alluxio: 2.0.0, 200GB DRAM Cache

5x Storage Node 

• Intel(R) Xeon(R) CPU Gold 6140 @ 2.30GHz, 
192GB Memory

• 2x 82599 10Gb NIC 
• 7x 1TB HDD for Ceph bluestore or HDFS 

namenode and datanode
Software:
• Hadoop 2.8.1
• Ceph 12.2.7
• RHEL7.3 

Hadoop
Hive

YARN

DNS Hadoop
Hive

Hadoop
Hive

Hadoop
Hive

Hadoop
Hive

YARN YARN YARN YARN

Alluxio worker Alluxio worker Alluxio worker Alluxio worker Alluxio worker

CEPH

RGW1 

MON 

OSD

CEPH

RGW2 

OSD

CEPH

RGW3 

OSD

CEPH

RGW4 

OSD

CEPH

RGW5 

OSD

5 * Spark exec 5 * Spark exec 5 * Spark exec 5 * Spark exec 5 * Spark exec



Performance overview
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Using Alluxio IMDA as cache: 

• For terasort, 3.4x speedup over S3 object storage, 1.36x speedup over local HDFS. 

• For TPCDS test, up to 1.56x performance speedup for IO intensive queries, slightly lower than local HDFS.  

• For KMeans test, 1.62x speedup over S3 object storage, 14% lower compared with local HDFS. 

• KMeans is a CPU intensive workload

1.00 1.00 1.00 1.00

0.70
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0.40
0.53

0.96 0.97
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0.86

0.0
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0.6

0.8

1.0

1.2

1.4

1.6

Batch Query (54 quiries) IO INTENSIVE (7 quiries) TERASORT 1T KMEANS 374g

Alluxio Acceleration of Disaggregated analytics storage

spark(yarn)  +  Local HDFS (HDD) spark(yarn) +  S3 (HDD) spark(yarn)  + alluxio(MEM) +  S3 (HDD)

higher is better

Using Alluxio IMDA cache improved in IO intensive workloads but remains headroom in other cases. 
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Spark-PMoF Design

• 1. Serialize obj to off-heap memory

• 2. Write to local shuffle dir

• 3. Read from local shuffle dir

• 4. Send to remote reader through TCP-IP

➢ Lots of context switch 

➢ POSIX buffered read/write on shuffle disk

➢ TCP/IP based socket send for remote shuffle read
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PMEM

Shuffle file

Spark.Local.dir

Shuffle file

Executor JVM #1

User

Kernel

SSD HDD

3

Shuffle write

Shuffle read

2

4

Worker

1. Serialize obj to off-heap memory

2. Persistent to PMEM 

3. Read from remote PMEM through RDMA, PMEM is 

used as RDMA memory buffer

➢ No context switch 

➢ Efficient read/write on PMEM

➢ RDMA read for remote shuffle read based on HPNL

Executor JVM #1

User

Kernel 3

Worker

PMEM
Shuffle Manager

Shuffle Manager

NIC

Shuffle

Writer 

RDMA NICPMEM

Drivers

Shuffle

Reader bytebuffer

1 obj
Heap

Off-heap

Shuffle

Writer(new)

Shuffle

Reader(new)

obj

bytebuffer

1
Heap

Off-heap2

Spark PMoF: https://github.com/intel-bigdata/spark-pmof HPNL: https://github.com/intel-bigdata/hpnl

https://github.com/intel-bigdata/spark-pmof
https://github.com/intel-bigdata/hpnl


Benchmark configuration 
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*Other names and brands may be 
claimed as the property of others.

3 Node cluster
Hardware:
• Intel® Xeon™ processor  Gold 6140 CPU @ 2.30GHz, 384GB Memory
• 1x Mellanox ConnectX-4 40Gb NIC
• Shuffle Devices：

• 1x 1T HDD/NVMe for shuffle
• 4x 256GB DCPM for shuffle

• 4x 1T NVMe for HDFS
Software:
• Hadoop 2.7
• Spark 2.3
• Fedora 27 with WW26 BKC

Hadoop NN
Spark Master 

Hadoop DN
Spark Slave

Hadoop DN
Spark Slave

Hadoop DN
Spark Slave

1x40Gb NIC

4x NVMe

1x HDD 4x DCPM

4x NVMe

1x HDD 4x DCPM

4x NVMe

1x HDD 4x DCPM

1x NVMe 1x NVMe 1x NVMe

Workloads
Terasort 1TB:
• hibench.spark.master yarn-client
• hibench.yarn.executor.num 12
• yarn.executor.num 12
• hibench.yarn.executor.cores 8
• yarn.executor.cores 8
• spark.shuffle.compress false
• spark.shuffle.spill.compress false
• spark.executor.memory 60g
• spark.executor.memoryoverhead 10G
• spark.driver.memory 80g
• spark.eventLog.compress = false
• spark.executor.extraJavaOptions=-XX:+UseG1GC
• spark.hadoop.yarn.timeline-service.enabled false
• spark.serializer org.apache.spark.serializer.KryoSerializer
• hibench.default.map.parallelism 200
• hibench.default.shuffle.parallelism 1000



Spark PMoF Performance 

▪ Spark-PMoF shows great end-to-end execution time 

in TeraSort.

▪ ~13.7x performance benefit over HDD.

▪ ~5% performance benefit over NVMe (P4500).

▪ ~10.5% slower than Optane-SSD (P4800), since 

Optane-SSD has higher write bandwidth than 

DCPM.

▪ Spark-PMoF shows ultra low shuffle remote read 

latency.

▪ Median latency reduces by ~1000x than NVMe 

and Optane-SSD, reduces ~105000x than HDD.

▪ Tail latency reduces by ~1500x than NVMe and 

Optane-SSD, reduces ~90000x than HDD.
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Summary

• Bigdata analytics is the key cloud workload, customer is adopting 

• Lots of challenges running Bigdata analytics on public cloud, including 

functionality, simplicity, performance gaps 

• With bigdata analytics on public cloud, a new high performance, low 

latency in memory data accelerator leveraging state-of-art HW 

technologies can help to address the performance gaps

• POC with Alluxio IMDA as Cache and Spark PMoF as shuffle 

demonstrated significant performance and latency improvement 
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Notices and Disclaimers

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this 

document.

• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of 

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from 

course of performance, course of dealing, or usage in trade.

• This document contains information on products, services and/or processes in development. All information 

provided here is subject to change without notice. Contact your Intel representative to obtain the latest 

forecast, schedule, specifications and roadmaps.

• The products and services described may contain defects or errors known as errata which may cause 

deviations from published specifications. Current characterized errata are available on request.

• Intel, the Intel logo, Xeon, Optane, Optane DC Persistent Memory are trademarks of Intel Corporation in the 

U.S. and/or other countries.

• *Other names and brands may be claimed as the property of others

• © Intel Corporation. 
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Legal Information: Benchmark and 

Performance Disclaimers

• Performance results are based on testing as of Feb. 2019 and may not reflect all publicly available 

security updates. See configuration disclosure for details. No product can be absolutely secure.

• Software and workloads used in performance tests may have been optimized for performance only 

on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using 

specific computer systems, components, software, operations and functions. Any change to any of 

those factors may cause the results to vary. You should consult other information and performance 

tests to assist you in fully evaluating your contemplated purchases, including the performance of that 

product when combined with other products. For more information, see Performance Benchmark Test 

Disclosure.

• Configurations:  see performance benchmark test configurations. 
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