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NAND Flash Memory Lifetime Problem
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Flash lifetime decreases in each generation
despite increased ECC strength



Planar vs. 3D NAND Flash Memory
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Reduce flash cell size,
Reduce distance b/w cells Increase # of layers

Scaling hurts reliability Not well studied!



Executive Summary
• Problem: 3D NAND error characteristics are not well studied
• Goal: Understand & mitigate 3D NAND errors to improve lifetime
• Contribution 1: Characterize real 3D NAND flash chips
• Process variation: 21× error rate difference across layers
• Early retention loss: Error rate increases by 10× after 3 hours
• Retention interference: Not observed before in planar NAND

• Contribution 2: Model RBER and threshold voltage
• RBER (raw bit error rate) variation model
• Retention loss model

• Contribution 3: Mitigate 3D NAND flash errors
• LaVAR: Layer Variation Aware Reading
• LI-RAID: Layer-Interleaved RAID
• ReMAR: Retention Model Aware Reading
• Improve flash lifetime by 1.85× or reduce ECC overhead by 78.9%
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Process Variation Across Layers
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Characterization Methodology

•Modified firmware version in the flash controller
•Controls the read reference voltage of the flash chip
•Bypasses ECC to get raw data (with raw bit errors)

•Analysis and post-processing of the data on the server
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Layer-to-Layer Process Variation
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Layer-to-Layer Process Variation
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Large RBER variation
across layers and LSB-MSB pages



Retention Loss Phenomenon
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Most dominant type of error in planar NAND.
Is this true for 3D NAND as well?
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Early Retention Loss
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Retention errors increase quickly
immediately after programming



Characterization Summary

• Layer-to-layer process variation
• Large RBER variation across layers and LSB-MSB pages
•Æ Need new mechanisms to tolerate RBER variation!

• Early retention loss
• RBER increases quickly after programming
•Æ Need new mechanisms to tolerate retention errors!

• Retention interference
• Amount of retention loss correlated with neighbor cells’ states
•Æ Need new mechanisms to tolerate retention interference!

• More threshold voltage and RBER results in the paper:
3D NAND P/E cycling, program interference, read disturb, read 
variation, bitline-to-bitline process variation

• Our approach based on insights developed via our experimental 
characterization: Develop error models, and build online
error mitigation mechanisms using the models
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What Do We Model?
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Va Vb Vc

Optimal Read Reference Voltage

16

Pr
ob

ab
ili

ty

Threshold Voltage (Vth)

Raw Bit Errors



Retention Loss Model
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Early retention loss can be modeled as
a simple linear function of log(retention time)



Retention Loss Model

• Goal: Develop a simple linear model that can be used online

• Models
• Optimal read reference voltage (Vb and 𝑽𝒄)
• Raw bit error rate (𝒍𝒐𝒈 (𝑹𝑩𝑬𝑹))
• Mean and standard deviation of threshold voltage distribution 

(𝝁 and 𝝈)
• As a function of
• Retention time (𝒍𝒐𝒈 (𝒕))
• P/E cycle count (𝑷𝑬𝑪)

• e.g., 𝑽𝒐𝒑𝒕  𝜶 𝑷𝑬𝑪 𝜷 𝒍𝒐𝒈 𝒕 𝜸 𝑷𝑬𝑪 𝜹

• Model error <1 step for Vb and 𝑽𝒄
• Adjusted R2 > 89%
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RBER Variation Model
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Variation-agnostic Vopt
• Same Vref for all layers optimized for the entire block

Variation-aware Vopt
• Different Vref optimized for each layer

KL-divergence error = 0.09

RBER distribution follows gamma distribution
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LaVAR: Layer Variation Aware Reading

• Layer-to-layer process variation
• Error characteristics are different in each layer

• Goal: Adjust read reference voltage for each layer

• Key Idea: Learn a voltage offset (Offset) for each layer
• 𝑽𝒐𝒑𝒕

𝑳𝒂𝒚𝒆𝒓 𝒂𝒘𝒂𝒓𝒆  𝑽𝒐𝒑𝒕
𝑳𝒂𝒚𝒆𝒓 𝒂𝒈𝒏𝒐𝒔𝒕𝒊𝒄 𝑶𝒇𝒇𝒔𝒆𝒕

• Mechanism
• Offset: Learned once for each chip & stored in a table
• Uses (𝟐 𝑳𝒂𝒚𝒆𝒓𝒔) Bytes memory per chip
• 𝑽𝒐𝒑𝒕

𝑳𝒂𝒚𝒆𝒓 𝒂𝒈𝒏𝒐𝒔𝒕𝒊𝒄: Predicted by any existing Vopt model
• E.g., ReMAR [Luo+Sigmetrics’18], HeatWatch [Luo+HPCA’18],

OFCM [Luo+JSAC’16], ARVT [Papandreou+GLSVLSI’14]

• Reduces RBER on average by 43%
(based on our characterization data)
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LI-RAID: Layer-Interleaved RAID

• Layer-to-layer process variation
• Worst-case RBER much higher than average RBER

• Goal: Significantly reduce worst-case RBER

• Key Idea
• Group flash pages on less reliable layers

with pages on more reliable layers
• Group MSB pages with LSB pages

• Mechanism
• Reorganize RAID layout to eliminate worst-case RBER
• <0.4% storage overhead
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Conventional RAID
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Wordline # Layer # Page Chip 0 Chip 1 Chip 2 Chip 3
0 0 MSB Group 0 Group 0 Group 0 Group 0
0 0 LSB Group 1 Group 1 Group 1 Group 1
1 1 MSB Group 2 Group 2 Group 2 Group 2
1 1 LSB Group 3 Group 3 Group 3 Group 3
2 2 MSB Group 4 Group 4 Group 4 Group 4
2 2 LSB Group 5 Group 5 Group 5 Group 5
3 3 MSB Group 6 Group 6 Group 6 Group 6
3 3 LSB Group 7 Group 7 Group 7 Group 7

Worst-case RBER in any layer
limits the lifetime of conventional RAID



LI-RAID: Layer-Interleaved RAID
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Wordline # Layer # Page Chip 0 Chip 1 Chip 2 Chip 3
0 0 MSB Group 0 Blank Group 4 Group 3
0 0 LSB Group 1 Blank Group 5 Group 2
1 1 MSB Group 2 Group 1 Blank Group 5
1 1 LSB Group 3 Group 0 Blank Group 4
2 2 MSB Group 4 Group 3 Group 0 Blank
2 2 LSB Group 5 Group 2 Group 1 Blank
3 3 MSB Blank Group 5 Group 2 Group 1
3 3 LSB Blank Group 4 Group 3 Group 0

Any page with worst-case RBER can be corrected by 
other reliable pages in the RAID group



LI-RAID: Layer-Interleaved RAID

• Layer-to-layer process variation
• Worst-case RBER much higher than average RBER

• Goal: Significantly reduce worst-case RBER

• Key Idea
• Group flash pages on less reliable layers

with pages on more reliable layers
• Group MSB pages with LSB pages

• Mechanism
• Reorganize RAID layout to eliminate worst-case RBER
• <0.8% storage overhead

• Reduces worst-case RBER by 66.9%
(based on our characterization data)
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ReMAR: Retention Model Aware Reading

• Early retention loss
• Threshold voltage shifts quickly after programming

• Goal: Adjust read reference voltages based on retention loss

• Key Idea: Learn and use a retention loss model online

• Mechanism
• Periodically characterize and learn retention loss model online
• Retention time = Read timestamp - Write timestamp
• Uses 800 KB memory to store program time of each block
• Predict retention-aware Vopt using the model

• Reduces RBER on average by 51.9%
(based on our characterization data)
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Impact on System Reliability
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Error Mitigation Techniques Summary

• LaVAR: Layer Variation Aware Reading
• Learn a Vopt offset for each layer and apply layer-aware Vopt

• LI-RAID: Layer-Interleaved RAID
• Group flash pages on less reliable layers

with pages on more reliable layers
• Group MSB pages with LSB pages

• ReMAR: Retention Model Aware Reading
• Learn retention loss model and apply retention-aware Vopt

• Benefits:
• Improve flash lifetime by 1.85× or reduce ECC overhead by 78.9%

• ReNAC (in paper): Reread a failed page using Vopt based on the
retention interference induced by neighbor cell
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Conclusion
• Problem: 3D NAND error characteristics are not well studied
• Goal: Understand & mitigate 3D NAND errors to improve lifetime
• Contribution 1: Characterize real 3D NAND flash chips
• Process variation: 21× error rate difference across layers
• Early retention loss: Error rate increases by 10× after 3 hours
• Retention interference: Not observed before in planar NAND

• Contribution 2: Model RBER and threshold voltage
• RBER (raw bit error rate) variation model
• Retention loss model

• Contribution 3: Mitigate 3D NAND flash errors
• LaVAR: Layer Variation Aware Reading
• LI-RAID: Layer-Interleaved RAID
• ReMAR: Retention Model Aware Reading
• Improve flash lifetime by 1.85× or reduce ECC overhead by 78.9%
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