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FlashMemory eTLC Endurance Improvement

Decoding Coverage/Endurance Comparison
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e Qur Error Recovery Scheme use ML to find Optimal Parameters for variant
operatfion conditions ( combination of {PE, DR, RD, Temperature} )

e 5x Extension for Baking Time & 2x Extension for P/E Count



FashMemory cTLC vs eTLC — RBER — HTDR

High Temperature Data Retention

. Normalized RBER - Comparison
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RBER change with operation condition {P/E, DR, RD, Cross Temp....}

There is always a RBER gap between cTLC and eTLC



High Temperature Data Retention
Decoding Coverage - Hard Decode - Comparison
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* There is always an endurance gap between cILC and eTLC

 eTLC with Retry Read has better decoding coverage



FlashMemory cTLC vs eTLC - Endurance - HTDR

High Temperature Data Retention
Decoding Coverage - Hard Decode - Improvement
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e QOur ML techniques can extend decoding coverage for cTLC

(Optimized Retry Sequence and Read Level Prediction Model)



Memory cTLC vs eTLC - Endurance - HTDR

High Temperature Data Retention
Decoding Coverage - Soft Decode - Improvement
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e There is an intrinsic gap for soft decoding coverage

 The soft decoding coverage is far beyond the spec



FlashMemory cTLC vs eTLC — Latency — HTDR

High Temperature Data Retention  Road Cnt Ditrbution - Improvement
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e There is always a latency gap between cTLC and eTLC ™
* cILC + ML can greatly reduce the read latency



FlashMemory cTLC vs eTLC — Latency — HTDR
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High Temperature Data Retention
Avg Read Count Improve Ratio
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e Improvement Ratio : Avg Read eTLC / Avg Read (cTLC + ML)
e CTLC + ML always has less read count compared with eTLC



FlashMemorY Error Recovery Flow
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. Default Read Level 2. Reiry/Optimal Read Level 3. Retry/Optimal Read Level
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T Retry/OptlmaI Read Level
Probability Density Default Read Soft Decoding Capability
(Error Bits)
FER (Frame Error Rate) /—\

>
Error Bits Count/Chunk Size




FlashMemory Read Level Management
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1. Optimized Retry Sequence
2. Adjust Default Read Level
3. Accurate Optimal Read Level

Read Level
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rlas;hMemory Read Retry Table - Clustering
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Billions of ECC Chunks Info were collected over dice under different failure mode

P/E Baking | Optimal Optimal
Die Plane BLK WL PageType .
gelyp Count Time Read LV1 | Read LV2
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Chunks
Info 3 1 120 31 0 4000 36 +3 -12
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FlashMemory Optimized Retry Sequence

Find some indexes to separate the data, reduce number of retry tables

PageType 0 - By Failure Mode PageType 1 - By Failure Mode PageType 2 - By Failure Mode
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FlaS;hMemory Prediction Model - Optimal Read Level
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Example: Data Collection _Feature Selection

Input | Input | Input | Input | Input | Input | Optimal HD
Para 1l | Para2 | Para 3| Para 4| Para 5| Para 6| Read Level

Datal [ 1100 [ 589 | 1794 | 6322 | 1000 [ 1000 6 —
Data2 | 932 | 908 | 1503 | 7849 | 500 | 500 -5 E
Data N | 990 | 842 [ 1894 | 5692 | 300 | 400 [ 3 | E

Nomalized Constraint ¢

 What's the Optimal HD Read Level after n Days/Weeks?

* Input Parameters:
- P/E Cycle, Retention Time, Read Count, Temperature, Dwell ...
Program/Erase Time, Histogram ...
« Regression Problem:
- Ordinary Least Square(OLS) Regression
- Ridge Regression (Hoerl and Kennard, 1970)
- Other Regression Analysis can be used to solve this problem
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FlaéhMeﬁiory cTLC vs eTLC - Endurance - Cross Temp

Cross Temperature - LT Write
Decoding Coverage - Hard Decode - Comparison
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e Typical Result: eTLC > cTLC , Retry Read > Default Read
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Flaéh,Meﬁiory cTLC vs eTLC - Endurance - Cross Temp

Cross Temperature - LT Write
Decoding Coverage - Hard Decode - Improvement
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e Our ML techniques can extend decoding coverage for cTLC
(Optimized Retry Sequence and Read Level Prediction Model)
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FlashMemory Latency Improvement

Change Read Level and the Priority of Retry Table dynamically
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Last line of defense - Prediction Model : Optimal Read Level/LLR
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FlashMemory cTLC vs eTLC — Latency - Cross Temp
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Cross Temperature - LT Write
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n,f\etnory cTLC vs eTLC - Latency - Cross Temp
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Cross Temperature - LT Write
Avg Read Count Improve Ratio

[6)]

ve Ratio
u /

/

w

[ {

ad Count Impro
nN

-

I

A\Q Re
/

:
0.75
Normalized P/E  0-330.17 ? g > Normalized Cross Temperature

Improvement Ratio : Avg Read eTLC / Avg Read (cTLC + ML)
cTLC + ML always has less read count compared with eTLC
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FlasiiMemory Implement For Future Status Prediction

—

_ Prediction Flow _ L
Trigger — Triggered P1: Trigger Condition/Frequency ?

Select Block/Page

Block../Page, P2 : Block/Page(s) to be selected ?
P3 : Important/Required Parameters ?

Collection =

Collect
Required Parameters

Future Status
Prediction Model
Prediction — (Ex. Fail Rate, P5 : Power-Off !
Optimal Parameters..

after 1 week )

P4 : Operation Condition in 1 week !!!
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FlashMemory Symmary

| SUMMIT

How to Extend Endurance & Reduce Error Recovery Latency
Optimized Read Retry Sequence
Optimal Read Level, LLR, Status Prediction Model

Design Error Recovery Scheme based on NAND Flash
Characteristic/Controller Architecture

Replace Enterprise Level TLC with Client Level TLC
cTLC + ML can achieve eTLC specification (JESD218)
cTLC + ML can greatly reduce the latency compared with eTLC
Large sample testing follow JESD218 is on-going
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THANK YOU!

Any questions?

Come by LITE-ON " for Demos!

= |Learn about Machine Learning & the latest SSD Technology
=  Get achance to win special prizes!



