

Using Machine Learning Techniques To Reduce SSD Costs

Cloud Zeng LITEON/Storage/NVM Lab

Flash Memory Summit 2019 Santa Clara, CA

eTLC Endurance Improvement

- Our Error Recovery Scheme use ML to find Optimal Parameters for variant operation conditions (combination of {PE, DR, RD, Temperature})
- 5x Extension for Baking Time & 2x Extension for P/E Count

- RBER change with operation condition {P/E, DR, RD, Cross Temp....}
- There is always a RBER gap between cTLC and eTLC

- There is always an endurance gap between cTLC and eTLC
- eTLC with Retry Read has better decoding coverage

cTLC vs eTLC - Endurance - HTDR

 Our ML techniques can extend decoding coverage for cTLC (Optimized Retry Sequence and Read Level Prediction Model)

cTLC vs eTLC - Endurance - HTDR

- There is an intrinsic gap for soft decoding coverage
- The soft decoding coverage is far beyond the spec

cTLC vs eTLC – Latency – HTDR

There is always a latency gap between cTLC and eTLC

• cTLC + ML can greatly reduce the read latency

cTLC vs eTLC - Latency - HTDR

- Improvement Ratio : Avg Read eTLC / Avg Read (cTLC + ML)
- cTLC + ML always has less read count compared with eTLC

Error Bits Count/Chunk Size

Read Level Management

Error Bits Count/Chunk Size

Read Retry Table – Clustering

Billions of ECC Chunks Info were collected over dice under different failure mode

Optimized Retry Sequence

Find some indexes to separate the data, reduce number of retry tables

Prediction Model – Optimal Read Level

Example: Data Collection

	Input Para 1	Input Para 2	Input Para 3	Input Para 4	Input Para 5	Input Para 6	Optimal HD Read Level
Data 1	1100	589	1794	6322	1000	1000	6
Data 2	932	908	1503	7849	500	500	-5
Data N	990	842	1894	5692	300	400	3

Feature Selection

- What's the Optimal HD Read Level after n Days/Weeks?
- Input Parameters:
 - P/E Cycle, Retention Time, Read Count, Temperature, Dwell ... Program/Erase Time, Histogram
- **Regression Problem**:
 - Ordinary Least Square(OLS) Regression
 - Ridge Regression (Hoerl and Kennard, 1970)
 - Other Regression Analysis can be used to solve this problem

cTLC vs eTLC - Endurance - Cross Temp

Typical Result : eTLC > cTLC , Retry Read > Default Read

cTLC vs eTLC - Endurance - Cross Temp

 Our ML techniques can extend decoding coverage for cTLC (Optimized Retry Sequence and Read Level Prediction Model)

Change Read Level and the Priority of Retry Table dynamically

Last line of defense → Prediction Model : Optimal Read Level/LLR

cTLC vs eTLC - Latency - Cross Temp

There is always a latency gap between cTLC and eTLC

• cTLC + ML can greatly reduce the read latency

cTLC vs eTLC - Latency - Cross Temp

- Improvement Ratio : Avg Read eTLC / Avg Read (cTLC + ML)
- cTLC + ML always has less read count compared with eTLC

- How to Extend Endurance & Reduce Error Recovery Latency
 - Optimized Read Retry Sequence
 - Optimal Read Level, LLR, Status Prediction Model
 - Design Error Recovery Scheme based on NAND Flash Characteristic/Controller Architecture
- Replace Enterprise Level TLC with Client Level TLC
 - cTLC + ML can achieve eTLC specification (JESD218)
 - cTLC + ML can greatly reduce the latency compared with eTLC
 - Large sample testing follow JESD218 is on-going

THANK YOU! Any questions?

Come by LITE-ON Booth# 621 for Demos! Learn about Machine Learning & the latest SSD Technology Get a chance to win special prizes!

