

Advanced data integrity assurance for QLC flash

Licheng Xue, PhD STARBLAZE

- QLC feature
- Read retry
- Advanced LDPC soft decoding
- RAID6 application
- Conclusion

- Large capacity, 1Tb/1.33Tb
- Low cost
- 100~1K PE cycles
- 2nd pass program
- Long program and read busy time
- pSLC is same

Conventional read fail process flow

Read retry strategy

- Traverse all retry options
- Smart read retry
- Deep retry mode
- Soft bit strategy
 - One hard bit + one soft bit
 - Change LLR mapping value
- RAID
 - No RAID
 - Adopt RAID5

- Read retry options
 - MLC ~10 options
 - TLC ~20 options
 - QLC ~40 options or even more
- Traverse all options is not reasonable
- Smart/deep retry first
 - 0/1 ratio
 - cell-to-cell interference
 - temperature
 - PE cycles and retention times
 - Bad cell
 - ...
- Move to soft bit after 3 smart retry reads failed

Soft bit read

- Soft bit read cost more time
 - 1 hard bit + 1 soft bit = 3 reads
 - 1 hard bit + 2 soft bits= 5 reads
 - 1 hard bit + N soft bits= 1+2*N reads
- For TLC, 1 soft bit read is widely adopted

- More soft bits for better life cycle with little cost
- Soft bits were saved in DDR
- Hard bit decoding performance is not decreased
- LLR map strategy can be configured

Soft bit read

- Machine learning
 - Baseline: best read retry as hard bit
 - Vt variation in fix step
 - Use multiple LLR map value sets
 - Soft bits number from 1 to 4

Single Parity Block

- 7 data blocks+1 parity block
- 15 data blocks+1 parity block
- 31 data blocks+1 parity block

Double Parity Block

- 6 data blocks+2 parity blocks
- 14 data blocks+2 parity blocks
- 30 data blocks+2 parity blocks

RAID5

Provides better data redundancy than RAID 5 but with slightly lower capacity and possibly lower performance.

Space efficiency

Program efficiency

RAID stripe size	RAID5	RAID6	RAID5-RAID6	RAID stripe size	RAID5	RAID6	RAID5-RAID6
4	75.00%	50.00%	25.00%	4	100.00%	66.67%	33.33%
8	87.50%	75.00%	12.50%	8	100.00%	85.71%	14.29%
16	93.75%	87.50%	6.25%	16	100.00%	93.33%	6.67%
32	96.88%	93.75%	3.13%	32	100.00%	96.77%	3.23%
64	98.44%	96.88%	1.56%	64	100.00%	98.41%	1.59%

- With optimized read retry and soft bit read strategy, QLC got 1.3x life cycle. Combined with RAID6, 1.7x life cycle can be got.
- As a low cost NAND flash, QLC with acceptable reliability and better data integrity assurance method can be use in a lots of applications, such as client SSD and surveillance.

Thanks

Q&A

Come and visit us at Booth #715 www.starblaze-tech.com.cn