

Maximizing Performance/cost of SSD Composed of Memory-type and Storage-type SCMs

Reika Kinoshita, Chihiro Matsui and Ken Takeuchi Chuo University, Japan

Flash Memory Summit 2019 Santa Clara, CA

- 1. Introduction
- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

1. Introduction

- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

Storage Class Memories (SCMs)

- SCMs can be categorized into 2 types;
 - Memory-type SCM (M-SCM) [1] and Storage-type SCM (S-SCM) [2]

	M-SCM	S-SCM	
Access unit	Sector (512 Bytes)		
Write/Read latency	100 ns / 100 ns	1 us / 1 us	
Bit cost (TLC NAND flash = 1)	20	6	
Endurance	10 ⁹	10 ⁵	
Candidates	MRAM	ReRAM PRAM 3D XPoint	

Flash Memory Summit 2019 Santa Clara, CA [1] J. J. Kan et al., TED, vol. 64, no. 9, pp. 3639-3646, Sep. 2017.
[2] Intel Optain Technology, https://ark.intel.com/content/www/us/en/ark/products/97159/inteloptane-ssd-dc-p4800x-series-1-5tb-1-2-height-pcie-x4-3d-xpoint.html

Proposed Multi-SCM SSD [4]

M-SCM is used as non-volatile (NV) cache of S-SCM

<Conventional all S-SCM SSD [3]>

<Proposed Multi-SCM SSD [4]>

 Flash Memory Summit 2019
 [3] T. Onagi *et al.*, *JJAP*, vol. 54, no. 4S, pp. 04DE04-1-04DE04-7, 2015.

 Santa Clara, CA
 [4] R. Kinoshita *et al.*, *NVMTS*, 2018, pp. 1-6.

Purpose of This Work

- Optimal M-SCM capacity is determined by total SSD cost and SSD performance
 - Maximize performance/cost of Multi-SCM SSD
- ✓ **Optimal wear-leveling** is investigated to boost SSD performance
 - Boost SSD performance <u>without reducing endurance lifetime</u> of Multi-SCM SSD

1. Introduction

- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

Data Management Algorithm

 Non-volatile Write-back (NV-WB) algorithm stores frequently accessed data in M-SCM [5]

Write operation:

Flash Memory Summit 2019 Santa Clara, CA

[5] S. Okamoto et al., IMW, 2015, pp. 157-160.

SSD Emulator [6]

 Transaction Level Modeling emulator is used to evaluate SSD performance and endurance

Flash Memory Summit 2019 [6] H. Fujii *et al.*, *VLSI Circuit Dig. Tech. Papers*, 2012, pp. 134-135. Santa Clara, CA

Workloads [5, 7]

• For performance evaluation, 4 workloads are used

■ Average overwrite ■ Average read frequency

Workload	Userdata size (GB)	Category
prxy_0	0.98	Write- <mark>hot</mark>
hm_0	21.67	Write- <mark>cold</mark>
prxy_1	4.51	Read- <mark>hot</mark>
proj_3	5.90	Read-cold

- Average access frequency :
 - •Average overwrite
 - = Total write data size / User data size
 - •Average read frequency
 - = Total read data size / User data size
- Hot/Cold : Large/Small number of overwrite or re-read requests

Flash Memory Summit 2019 Santa Clara, CA [5] S. Okamoto *et al.*, *IMW*, 2015, pp. 157-160.[7] MSR Cambridge, http://iota.snia/org/traces/388.

- 1. Introduction
- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

Performance and Cost Results for Hot Workload (prxy_1)

- Accesses from host concentrate on small part of all LPA
 - \rightarrow Small capacity of M-SCM improves SSD performance

Performance and Cost Results for Cold Workload (hm_0)

• All S-SCM SSD is suitable because access does not concenter on particular addresses for cold workloads

- 1. Introduction
- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

Problem of Wear-leveling

- Data copy by wear-leveling decreases SSD performance
- Invalid sector
 Valid sector
 New data
- tor W/E cycle : overwrite count
 - C_{th} : Threshold for wear-leveling
 - Cow (= 5) : Wear-leveling interval

Flash Memory Summit 2019 [3] T. Onagi *et al.*, *JJAP*, vol. 54, no. 4S, pp. 04DE04-1-04DE04-7, 2015. Santa Clara, CA

Wear-leveling Cases

• Wear-leveling is omitted from M-SCM or S-SCM

Case	M-SCM	S-SCM
1	w/ wear-leveling	w/ wear-leveling
2	w/ wear-leveling	w/o wear-leveling
3	w/o wear-leveling	w/ wear-leveling
4	w/o wear-leveling	w/o wear-leveling

	M-SCM	S-SCM
Write/Read latency	ency 100 ns / 100 ns 1 us / 1 us	
Capacity	<mark>5%</mark> of SSD capacity	SSD capacity – M-SCM capacity
Endurance	10 ⁹	10 ⁵
Default Cow	5	

Flash Memory Summit 2019 Santa Clara, CA

Performance Results

- Case 4 achieves best SSD performance
- However, Case 4 is not realistic for SSD endurance lifetime

<Wear-leveling Cases>

Case	M-SCM	S-SCM
1	w/ wear- leveling	w/ wear- leveling
2	w/ wear- leveling	w/o wear- leveling
3	w/o wear- leveling	w/ wear- leveling
4	w/o wear- leveling	w/o wear- leveling

- 1. Introduction
- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

Difference of Endurance Limits between M-SCM and S-SCM

- When Max. write/erase cycles of M-SCM or S-SCM reach endurance limit, SSD cannot be used
 - M-SCM endurance limit : **10⁹** cycles
 - S-SCM endurance limit : 10⁵ cycles

Endurance Limits for M-SCM

 Maximum W/E cycles of M-SCM when Max. W/E cycles of S-SCM exceed endurance limit and S-SCM no longer works

<Wear-leveling Cases>

Case	M-SCM	S-SCM
1	1 w/ wear- w/ wear- leveling leveling	
2	w/ wear- leveling	w/o wear- leveling
3	w/o wear- leveling	w/ wear- leveling
4	w/o wear- leveling	w/o wear- leveling

Case of closest to M-SCM limit and best for most workloads

Flash Memory Summit 20 Santa Clara, CA

Endurance Limits for M-SCM

Maximum W/E cycles of M-SCM when Max. W/E cycles of S-SCM • exceed endurance limit and S-SCM no longer works

<Wear-leveling Cases>

Case	M-SCM	S-SCM	
1	w/ wear- leveling	w/ wear- leveling	
2	w/ wear- leveling	w/o wear- leveling	
3	w/o wear- leveling	w/ wear- leveling	
4	w/o wear- leveling	w/o wear- leveling	

Best Case for prxy_1 but over M-SCM endurance limit Weak wear-leveling

21

Weak Wear-leveling

• To enhance system performance, wear-leveling frequency is decreased (Default C_{ow} is set to 5)

W/E cycles of cells

C_{ow}: Wear-leveling interval

Frequently wear-leveling

- = Strong wear-leveling
 - Higher endurance reliability
 - Lower performance

Infrequently wear-leveling

= Weak wear-leveling

 $C_{ow} = 1000$

- ·Lower endurance reliability
- Higher performance

Flash Memory Summit 2019 Santa Clara, CA

With small C_{ow}

[2] T. Onagi et al., JJAP, vol. 54, no. 4S, pp. 04DE04-1-04DE04-7, 2015.

Weak Wear-leveling for prxy_1

Infrequently wear-leveling with large interval is applied for M-SCM ۲

- 1. Introduction
- 2. Data Management Algorithm and Evaluation Setup
- 3. Optimal Composition of Multi-SCM SSD
- 4. Wear-leveling Policy for Multi-SCM SSD
 - 1. Performance effect of wear-leveling
 - 2. Optimal wear-leveling applying cases
- 5. Conclusion

- Small capacity of M-SCM enhances SSD performance efficiently for hot workloads
- Wear-leveling is not needed to high endurance M-SCM for most workloads

	prxy_0 (Write <mark>-hot</mark>)	hm_0 (Write- <mark>cold</mark>)	prxy_1 (Read- <mark>hot</mark>)	proj_3 (Read- <mark>cold</mark>)
Optimal M-SCM capacity (IOPS improvement from all S-SCM SSD)	8% (+104%)	10% (+36%)	5% (+134%)	M-SCM is not needed
Optimal wear-leveling (IOPS improvement)	Only S-SCM (+14%)	Only S-SCM (+7.6%)	Only M-SCM with weak wear-leveling (+10.7%)	Only S-SCM (+0.6%)

Thank you for kind attention

This work is based on results from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO)

Wear-leveling

- To extend endurance lifetime of SSD, wear-leveling technique is applied to SCMs
- Data copy by wear-leveling decreases SSD performance

Problem of Wear-leveling

- Data movement by wear-leveling decreases SSD performance
- Invalid sector
 Valid sector
 New data
- ctor W/E cycle : overwrite count
 - C_{th} : Threshold for wear-leveling
 - Cow (= 5) : Wear-leveling interval

Flash Memory Summit 2019 [2] T. Onagi *et al.*, *JJAP*, vol. 54, no. 4S, pp. 04DE04-1-04DE04-7, 2015. Santa Clara, CA