

SSD with Compression: Implementation, Interface and Use Case

Erich F. Haratsch Seagate Technology

SSD with Compression: Introduction

- Data reduction techniques such as compression and deduplication have been employed in some storage systems, but are not widely available inside SSDs yet
- Confusion exists about benefits, use cases and data integrity when SSDs implement compression

Compressibility of Data

- Data bases, OS files, application data are typically highly compressible
- Image and video files may have some small compressibility left

	Typical Average Compressibility per Workload			
Compression Algorithm	MySQL	Oracle	Win8	Linux VM
gzip	60%	70%	50%	60%

Compressibility =
(1 – OutBytes / InBytes)
* 100%

SSD with Compression

- Compression algorithm needs to be lossless
- Compression needs to run inline at full data rate: low impact to write and read latencies
- Compression needs to be done before encryption and ECC encoding
- Compression reduces data written to media
- Write original data if data is incompressible

SSD Flash Translation Layer with Compression

Traditional FTL writes data chunks with equal physical size that fit into a flash page

FTL with compression:

LU: Logical unit PU: Physical unit

Use Compression to Increase Effective Overprovisioning

- Logical capacity does not change
- Reduces write amplification
- Increases random write and mixed read/write performance
- Increases endurance

OP

Additional OP

Compressed user data

Write Amp, OP and Compression

- For random write workloads, write amplification increases as OP decreases
- Compression increases available OP
- Compression reduces WA and therefore increases endurance and performance

Use Compression to Increase Logical Capacity

OP

Logical

capacity

- Report higher logical capacity to host
- Actual logical capacity depends on data entropy
- Host needs to monitor free physical space

Flash Memory Summit 2019 Santa Clara, CA

OP

Additional logical capacity

Compressed user data

QLC SSD with Compression

- QLC NAND media has typically low endurance and performance characteristics
- Compression can make QLC SSDs more attractive by increasing
 - endurance
 - performance
 - user capacity

SSD Product with Compression

- Nytro® 1000 SSD series
- Seagate DuraWrite[™] lossless data reduction technology is designed to increase performance and deliver high-power efficiency
- Tunable capacity for performance- or capacity-optimized SSD solutions
- Seagate Secure technology with secure supply chain, SD&D, Seagate Instant Secure Erase, and SED options
- Easy deployment in legacy storage infrastructures with SATA 6Gb/s interface
- Consistent IOPS performance with low latency for faster random access
- Won Best of Show award at Flash Memory Summit 2018

- Compression inside the SSD
 - Increases effective overprovisioning
 - Reduces write amplification
 - Increases endurance and performance
 - Increases logical capacity
 - Can make QLC SSDs more attractive for the data center

