
FLIN:
Enabling Fairness and Enhancing Performance

in Modern NVMe Solid State Drives

August 7, 2019
Santa Clara, CA

Saugata Ghose
Carnegie Mellon University

Executive Summary

Modern solid-state drives (SSDs) use new storage protocols
(e.g., NVMe) that eliminate the OS software stack
• I/O requests are now scheduled inside the SSD
• Enables high throughput: millions of IOPS

OS software stack elimination removes existing fairness mechanisms
• We experimentally characterize fairness on four real state-of-the-art SSDs
• Highly unfair slowdowns: large difference across concurrently-running applications

We find and analyze four sources of inter-application interference
that lead to slowdowns in state-of-the-art SSDs

 FLIN: a new I/O request scheduler for modern SSDs designed to
provide both fairness and high performance
• Mitigates all four sources of inter-application interference
• Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM space
• FLIN improves fairness by 70% and performance by 47% compared to a

state-of-the-art I/O scheduler
Page 2 of 34

Background: Modern SSD Design

Unfairness Across Multiple Applications
in Modern SSDs

FLIN:
Flash-Level INterference-aware SSD Scheduler

Experimental Evaluation

Conclusion
Page 3 of 34

Outline

Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

Page 4 of 34

Front end Back endFront end

Chip 0 Chip 1

Back end
Channel0

Chip 2 Chip 3
Channel1

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

Bus Interface

Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units

Page 5 of 34

Front end Back endFront end

Chip 0 Chip 1

Back end
Channel0

Chip 2 Chip 3
Channel1

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

Bus Interface

Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
• Host–Interface Logic (HIL): protocol used to communicate with host

Page 6 of 34

HIL

Device-level
Request Queues

Front end

Chip 0 Chip 1

Back end
Channel0

i

Chip 2 Chip 3
Channel1

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

Bus Interface

Request i,
 Page 1

Request i,
 Page M

Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
• Host–Interface Logic (HIL): protocol used to communicate with host
• Flash Translation Layer (FTL): manages resources, processes I/O requests

Page 7 of 34

HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ
RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ
GC-RDQ

Channel0

Chip 3 Queue

i

DRAM

Chip 0 Queue

Chip 2 Queue
Chip 1 Queue

Chip 2 Chip 3
Channel1

Address
Translation

Transaction
Scheduling
Unit (TSU)

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

Bus Interface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
• Host–Interface Logic (HIL): protocol used to communicate with host
• Flash Translation Layer (FTL): manages resources, processes I/O requests
• Flash Channel Controllers (FCCs): sends commands to, transfers data with

memory chips in back end

Page 8 of 34

HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ
RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ
GC-RDQ

Channel0

Chip 3 Queue

i

DRAM

Chip 0 Queue

Chip 2 Queue
Chip 1 Queue

FCC

Chip 2 Chip 3
Channel1FCC

Address
Translation

Transaction
Scheduling
Unit (TSU)

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

Bus Interface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

Conventional Host–Interface Protocols for SSDs

 SSDs initially adopted conventional host–interface protocols
(e.g., SATA)
• Designed for magnetic hard disk drives
• Maximum of only thousands of IOPS per device

Process 1 Process 2 Process 3

OS Software Stack

SSD Device

Hardware dispatch queue

I/O Scheduler

In-DRAM
I/O Request
Queue

Page 9 of 34

Modern SSDs use high-performance host–interface protocols
(e.g., NVMe)
• Bypass OS intervention: SSD must perform scheduling
• Take advantage of SSD throughput: enables millions of IOPS per device

OS Software Stack
Hardware dispatch queue

Host–Interface Protocols in Modern SSDs

Process 1 Process 2 Process 3

SSD Device
Page 10 of 34

I/O Scheduler

In-DRAM
I/O Request
Queue

Fairness mechanisms in OS software stack are also eliminated
Do modern SSDs need to handle fairness control?

Background: Modern SSD Design

Unfairness Across Multiple Applications
in Modern SSDs

FLIN:
Flash-Level INterference-aware SSD Scheduler

Experimental Evaluation

Conclusion
Page 11 of 34

Outline

Measuring Unfairness in Real, Modern SSDs

We measure fairness using four real state-of-the-art SSDs
• NVMe protocol
• Designed for datacenters

 Flow: a series of I/O requests generated by an application

 Slowdown = (lower is better)

Unfairness = (lower is better)

 Fairness = (higher is better)

Page 12 of 34

shared flow response time
alone flow response time

max slowdown
min slowdown

1
unfairness

average slowdown of tpce:
2x to 106x across our four real SSDs

Representative Example: tpcc and tpce

Page 13 of 34

tpce

tpcc

very low fairness

SSDs do not provide fairness
among concurrently-running flows

What Causes This Unfairness?

 Interference among concurrently-running flows
We perform a detailed study of interference

• MQSim: detailed, open-source modern SSD simulator [FAST 2018]
https://github.com/CMU-SAFARI/MQSim

• Run flows that are designed to demonstrate each source of interference
• Detailed experimental characterization results in the paper

We uncover four sources of interference among flows

Page 14 of 34

Source 1: Different I/O Intensities

The I/O intensity of a flow affects the average queue wait time
of flash transactions

 Similar to memory scheduling for bandwidth-sensitive threads
vs. latency-sensitive threads

Page 15 of 34

The average response time of a low-intensity flow
substantially increases due to

interference from a high-intensity flow

 Some flows take advantage of chip-level parallelism in back end

Leads to a low queue wait time

Source 2: Different Access Patterns

Page 16 of 34

Even distribution of transactions in chip-level queues

Other flows have access patterns that do not exploit parallelism

Source 2: Different Request Access Patterns

Page 17 of 34

Flows with parallelism-friendly access patterns
are susceptible to interference from

flows whose access patterns do not exploit parallelism

 State-of-the-art SSD I/O schedulers prioritize reads over writes
Effect of read prioritization on fairness (vs. first-come, first-serve)

Source 3: Different Read/Write Ratios

Page 18 of 34

When flows have different read/write ratios,
existing schedulers do not effectively provide fairness

Source 4: Different Garbage Collection Demands

NAND flash memory performs writes out of place
• Erases can only happen on an entire flash block (hundreds of flash pages)
• Pages marked invalid during write

Garbage collection (GC)
• Selects a block with mostly-invalid pages
• Moves any remaining valid pages
• Erases blocks with mostly-invalid pages

High-GC flow: flows with a higher write intensity induce
more garbage collection activities

Page 19 of 34

The GC activities of a high-GC flow can
unfairly block flash transactions of a low-GC flow

Summary: Source of Unfairness in SSDs

 Four major sources of unfairness in modern SSDs
1. I/O intensity
2. Request access patterns
3. Read/write ratio
4. Garbage collection demands

Page 20 of 34

OUR GOAL

Design an I/O request scheduler for SSDs that
(1) provides fairness among flows

by mitigating all four sources of interference, and
(2) maximizes performance and throughput

Background: Modern SSD Design

Unfairness Across Multiple Applications
in Modern SSDs

FLIN:
Flash-Level INterference-aware SSD Scheduler

Experimental Evaluation

Conclusion
Page 21 of 34

Outline

Fl
as

h
Tr

an
sa

ct
io

ns

FC
CFLIN

Fl
as

h
Tr

an
sa

ct
io

ns

FC
CTSU

Fl
as

h
Tr

an
sa

ct
io

ns

FC
C

HIL

Device-level
Request Queues

FTL

Flash
Management

Data

WRQ
RDQ

Front end

Chip 0 Chip 1

Back end

GC-WRQ
GC-RDQ

Channel0

Chip 3 Queue

i

DRAM

Chip 0 Queue

Chip 2 Queue
Chip 1 Queue

FCC

Chip 2 Chip 3
Channel1FCC

Address
Translation

Transaction
Scheduling
Unit (TSU)

Die 0

Plane0
Plane1

Die 1

Plane0
Plane1

M
ultiplexed
Interface

Bus Interface

Microprocessor

Request i,
 Page 1

Request i,
 Page M

FLIN: Flash-Level INterference-aware Scheduler

Page 22 of 34

 FLIN is a three-stage I/O request scheduler
• Replaces existing transaction scheduling unit
• Takes in flash transactions, reorders them, sends them to flash channel

 Identical throughput to state-of-the-art schedulers
 Fully implemented in the SSD controller firmware

• No hardware modifications
• Requires < 0.06% of the DRAM available within the SSD

 Stage 1: Fairness-aware Queue Insertion
relieves I/O intensity and access pattern interference

St
ag

e
1

Fa
irn

es
s-

aw
ar

e
Q

ue
ue

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

Q1

Q2

QP

Q1

Q2

DRAMFl
as

h
Tr

an
sa

ct
io

ns

FC
C

Three Stages of FLIN

Page 23 of 34

9 8 7 6 5 4 3 2 1 0

From high-intensity flows From low-intensity flows

HeadTail

 Stage 1: Fairness-aware Queue Insertion
relieves I/O intensity and access pattern interference

 Stage 2: Priority-aware Queue Arbitration
enforces priority levels that are assigned to each flow by the host

St
ag

e
1

Fa
irn

es
s-

aw
ar

e
Q

ue
ue

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

St
ag

e
2

Pr
io

rit
y-

aw
ar

e
Q

ue
ue

 A
rb

itr
at

io
n

Q1

Q2

QP

Q1

Q2

DRAMFl
as

h
Tr

an
sa

ct
io

ns

FC
C

Three Stages of FLIN

Page 24 of 34

St
ag

e
1

Fa
irn

es
s-

aw
ar

e
Q

ue
ue

 In
se

rt
io

n

Chip 0
Queue

Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

RDQ WRQ

QP

St
ag

e
2

Pr
io

rit
y-

aw
ar

e
Q

ue
ue

 A
rb

itr
at

io
n Chip 0

Queue
Chip 1
Queue

Chip 2
Queue

Chip 3
Queue

GC-WRQ

Write Slot
Read Slot

GC-RDQ St
ag

e
3

W
ai

t-b
al

an
cin

g
Tr

an
sa

ct
io

n
Se

le
ct

io
n

Q1

Q2

QP

Q1

Q2

DRAM DRAMFl
as

h
Tr

an
sa

ct
io

ns

FC
C

 Stage 1: Fairness-aware Queue Insertion
relieves I/O intensity and access pattern interference

 Stage 2: Priority-aware Queue Arbitration
enforces priority levels that are assigned to each flow by the host

 Stage 3: Wait-balancing Transaction Selection
relieves read/write ratio and garbage collection demand interference

Three Stages of FLIN

Page 25 of 34

Background: Modern SSD Design

Unfairness Across Multiple Applications
in Modern SSDs

FLIN:
Flash-Level INterference-aware SSD Scheduler

Experimental Evaluation

Conclusion
Page 26 of 34

Outline

Evaluation Methodology

Detailed SSD Simulator: MQSim [FAST 2018]
• Protocol: NVMe 1.2 over PCIe
• User capacity: 480GB
• Organization: 8 channels, 2 planes per die, 4096 blocks per plane,

256 pages per block, 8kB page size

 40 workloads containing four randomly-selected storage traces
• Each storage trace is collected from real enterprise/datacenter applications:

UMass, Microsoft production/enterprise
• Each application classified as low-interference or high-interference

Page 27 of 34

Download the Simulator and FAST 2018 Paper at
http://github.com/CMU-SAFARI/MQSim

 Sprinkler [Jung+ HPCA 2014]
a state-of-the-art device-level high-performance scheduler

 Sprinkler+Fairness [Jung+ HPCA 2014, Jun+ NVMSA 2015]
we add a state-of-the-art fairness mechanism to Sprinkler
that was previously proposed for OS-level I/O scheduling
• Does not have direct information about the internal resources and

mechanisms of the SSD
• Does not mitigate all four sources of interference

Two Baseline Schedulers

Page 28 of 34

FLIN Improves Fairness Over the Baselines

Page 29 of 34

0.0
0.2
0.4
0.6
0.8
1.0

25% 50% 75% 100%

Fa
irn

es
s

Fraction of High-Intensity Traces in Workload

Sprinkler Sprinkler+Fairness FLIN

FLIN improves fairness by an average of 70%,
by mitigating all four major sources of interference

FLIN Improves Performance Over the Baselines

Page 30 of 34

0.0

1.0

2.0

3.0

4.0

25% 50% 75% 100%

W
ei

gh
te

d
Sp

ee
du

p

Fraction of High-Intensity Traces in Workload

Sprinkler Sprinkler+Fairness FLIN

FLIN improves performance by an average of 47%,
by making use of idle resources in the SSD and

improving the performance of low-interference flows

Other Results in the Paper

 Fairness and weighted speedup for each workload
• FLIN improves fairness and performance for all workloads

Maximum slowdown
• Sprinkler/Sprinkler+Fairness: several applications with

maximum slowdown over 500x
• FLIN: no flow with a maximum slowdown over 80x

Effect of each stage of FLIN on fairness and performance

 Sensitivity study to FLIN and SSD parameters

Effect of write caching
Page 31 of 34

Background: Modern SSD Design

Unfairness Across Multiple Applications
in Modern SSDs

FLIN:
Flash-Level INterference-aware SSD Scheduler

Experimental Evaluation

Conclusion
Page 32 of 34

Outline

Conclusion

Modern solid-state drives (SSDs) use new storage protocols
(e.g., NVMe) that eliminate the OS software stack
• Enables high throughput: millions of IOPS
• OS software stack elimination removes existing fairness mechanisms
• Highly unfair slowdowns on real state-of-the-art SSDs

FLIN: a new I/O request scheduler for modern SSDs designed to
provide both fairness and high performance
• Mitigates all four sources of inter-application interference

» Different I/O intensities
» Different request access patterns
» Different read/write ratios
» Different garbage collection demands

• Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM
• FLIN improves fairness by 70% and performance by 47% compared to a

state-of-the-art I/O scheduler (Sprinkler+Fairness)
Page 33 of 34

FLIN:
Enabling Fairness and Enhancing Performance

in Modern NVMe Solid State Drives

Saugata Ghose
Carnegie Mellon University

Download our ISCA 2018 Paper at
http://ece.cmu.edu/~saugatag/papers/18isca_flin.pdf

References to
Papers and Talks

Page 35 of 34

Our FMS Talks and Posters
 FMS 2019

• Saugata Ghose, Modeling and Mitigating Early Retention Loss and Process Variation in 3D Flash
• Saugata Ghose, Enabling Fairness and Enhancing Performance in Modern NVMe Solid State

Drives
 FMS 2018

• Yixin Luo, HeatWatch: Exploiting 3D NAND Self-Recovery and Temperature Effects
• Saugata Ghose, Enabling Realistic Studies of Modern Multi-Queue SSD Devices

 FMS 2017
• Aya Fukami, Improving Chip-Off Forensic Analysis for NAND Flash
• Saugata Ghose, Vulnerabilities in MLC NAND Flash Memory Programming

 FMS 2016
• Onur Mutlu, ThyNVM: Software-Transparent Crash Consistency for Persistent Memory
• Onur Mutlu, Large-Scale Study of In-the-Field Flash Failures
• Yixin Luo, Practical Threshold Voltage Distribution Modeling
• Saugata Ghose, Write-hotness Aware Retention Management

 FMS 2015
• Onur Mutlu, Read Disturb Errors in MLC NAND Flash Memory
• Yixin Luo, Data Retention in MLC NAND Flash Memory

 FMS 2014
• Onur Mutlu, Error Analysis and Management for MLC NAND Flash Memory

Page 36 of 34

Our Flash Memory Works (I)

 Summary of our work in NAND flash memory
• Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid-State Drives, Proceedings of the IEEE, Sept. 2017.

Overall flash error analysis
• Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, Error Patterns in

MLC NAND Flash Memory: Measurement, Characterization, and
Analysis, DATE 2012.

• Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal,
Osman Unsal, and Ken Mai, Error Analysis and Retention-Aware Error
Management for NAND Flash Memory, ITJ 2013.

• Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
Enabling Accurate and Practical Online Flash Channel Modeling for
Modern MLC NAND Flash Memory, IEEE JSAC, Sept. 2016.

Page 37 of 34

Our Flash Memory Works (II)

 3D NAND flash memory error analysis
• Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,

Improving 3D NAND Flash Memory Lifetime by Tolerating Early
Retention Loss and Process Variation, SIGMETRICS 2018.

• Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
HeatWatch: Improving 3D NAND Flash Memory Device Reliability by
Exploiting Self-Recovery and Temperature-Awareness, HPCA 2018.

Multi-queue SSDs
• Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu, MQSim: A Framework for Enabling Realistic
Studies of Modern Multi-Queue SSD Devices, FAST 2018.

• Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim,
Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. Luna
and Onur Mutlu, FLIN: Enabling Fairness and Enhancing Performance in
Modern NVMe Solid State Drives, ISCA 2018.

Page 38 of 34

Our Flash Memory Works (III)

 Flash-based SSD prototyping and testing platform
• Yu Cai, Erich F. Haratsh, Mark McCartney, Ken Mai, FPGA-based solid-

state drive prototyping platform, FCCM 2011.

Retention noise study and management
• Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal,

Osman Unsal, and Ken Mai, Flash Correct-and-Refresh: Retention-Aware
Error Management for Increased Flash Memory Lifetime, ICCD 2012.

• Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, Data
Retention in MLC NAND Flash Memory: Characterization, Optimization
and Recovery, HPCA 2015.

• Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu,
WARM: Improving NAND Flash Memory Lifetime with Write-hotness
Aware Retention Management, MSST 2015.

• Aya Fukami, Saugata Ghose, Yixin Luo, Yu Cai, and Onur Mutlu,
Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash
Memory Devices, Digital Investigation, Mar. 2017.

Page 39 of 34

Our Flash Memory Works (IV)

Program and erase noise study
• Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, Threshold Voltage

Distribution in MLC NAND Flash Memory: Characterization, Analysis
and Modeling, DATE 2013.

• Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch,
Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques, HPCA 2017.

Cell-to-cell interference characterization and tolerance
• Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai, Program

Interference in MLC NAND Flash Memory: Characterization, Modeling,
and Mitigation, ICCD 2013.

• Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Osman Unsal,
Adrian Cristal, and Ken Mai, Neighbor-Cell Assisted Error Correction for
MLC NAND Flash Memories, SIGMETRICS 2014.

Page 40 of 34

Our Flash Memory Works (V)

Read disturb noise study
• Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur

Mutlu, Read Disturb Errors in MLC NAND Flash Memory:
Characterization and Mitigation, DSN 2015.

 Flash errors in the field
• Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, A Large-Scale

Study of Flash Memory Errors in the Field, SIGMETRICS 2015.

Persistent memory
• Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and

Onur Mutlu, ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems, MICRO 2015.

Page 41 of 34

Referenced Papers and Talks

All are available at
• https://safari.ethz.ch/publications/
• https://www.ece.cmu.edu/~safari/talks.html

And, many other previous works on
• Challenges and opportunities in memory
• NAND flash memory errors and management
• Phase change memory as DRAM replacement
• STT-MRAM as DRAM replacement
• Taking advantage of persistence in memory
• Hybrid DRAM + NVM systems
• NVM design and architecture

Page 42 of 34

