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Executive Summary

Modern solid-state drives (SSDs) use new storage protocols
(e.g., NVMe) that eliminate the OS software stack
• I/O requests are now scheduled inside the SSD
• Enables high throughput: millions of IOPS

OS software stack elimination removes existing fairness mechanisms
• We experimentally characterize fairness on four real state-of-the-art SSDs
• Highly unfair slowdowns: large difference across concurrently-running applications

We find and analyze four sources of inter-application interference
that lead to slowdowns in state-of-the-art SSDs

 FLIN: a new I/O request scheduler for modern SSDs designed to 
provide both fairness and high performance
• Mitigates all four sources of inter-application interference
• Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM space
• FLIN improves fairness by 70% and performance by 47% compared to a 

state-of-the-art I/O scheduler
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Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)
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Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
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Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
• Host–Interface Logic (HIL): protocol used to communicate with host
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Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
• Host–Interface Logic (HIL): protocol used to communicate with host
• Flash Translation Layer (FTL): manages resources, processes I/O requests
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Internal Components of a Modern SSD

Back End: data storage
• Memory chips (e.g., NAND flash memory, PCM, MRAM, 3D XPoint)

 Front End: management and control units
• Host–Interface Logic (HIL): protocol used to communicate with host
• Flash Translation Layer (FTL): manages resources, processes I/O requests
• Flash Channel Controllers (FCCs): sends commands to, transfers data with 

memory chips in back end
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Conventional Host–Interface Protocols for SSDs

 SSDs initially adopted conventional host–interface protocols 
(e.g., SATA)
• Designed for magnetic hard disk drives
• Maximum of only thousands of IOPS per device

Process 1 Process 2 Process 3

OS Software Stack

SSD Device

Hardware dispatch queue

I/O Scheduler

In-DRAM
I/O Request
Queue
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Modern SSDs use high-performance host–interface protocols 
(e.g., NVMe)
• Bypass OS intervention: SSD must perform scheduling 
• Take advantage of SSD throughput: enables millions of IOPS per device

OS Software Stack
Hardware dispatch queue

Host–Interface Protocols in Modern SSDs

Process 1 Process 2 Process 3

SSD Device
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Fairness mechanisms in OS software stack are also eliminated
Do modern SSDs need to handle fairness control?
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Measuring Unfairness in Real, Modern SSDs

We measure fairness using four real state-of-the-art SSDs
• NVMe protocol
• Designed for datacenters

 Flow: a series of I/O requests generated by an application

 Slowdown =                                               (lower is better)

Unfairness =                             (lower is better)

 Fairness =                     (higher is better)
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average slowdown of tpce:
2x to 106x across our four real SSDs

Representative Example: tpcc and tpce
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tpce

tpcc

very low fairness

SSDs do not provide fairness
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What Causes This Unfairness?

 Interference among concurrently-running flows
We perform a detailed study of interference

• MQSim: detailed, open-source modern SSD simulator [FAST 2018]
https://github.com/CMU-SAFARI/MQSim

• Run flows that are designed to demonstrate each source of interference
• Detailed experimental characterization results in the paper

We uncover four sources of interference among flows
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Source 1: Different I/O Intensities

The I/O intensity of a flow affects the average queue wait time
of flash transactions

 Similar to memory scheduling for bandwidth-sensitive threads 
vs. latency-sensitive threads
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The average response time of a low-intensity flow 
substantially increases due to 

interference from a high-intensity flow



 Some flows take advantage of chip-level parallelism in back end

Leads to a low queue wait time

Source 2: Different Access Patterns
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Even distribution of transactions in chip-level queues



Other flows have access patterns that do not exploit parallelism

Source 2: Different Request Access Patterns
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Flows with parallelism-friendly access patterns
are susceptible to interference from

flows whose access patterns do not exploit parallelism



 State-of-the-art SSD I/O schedulers prioritize reads over writes
Effect of read prioritization on fairness (vs. first-come, first-serve)

Source 3: Different Read/Write Ratios
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When flows have different read/write ratios,
existing schedulers do not effectively provide fairness



Source 4: Different Garbage Collection Demands

NAND flash memory performs writes out of place
• Erases can only happen on an entire flash block (hundreds of flash pages)
• Pages marked invalid during write

Garbage collection (GC)
• Selects a block with mostly-invalid pages
• Moves any remaining valid pages
• Erases blocks with mostly-invalid pages

High-GC flow: flows with a higher write intensity induce
more garbage collection activities
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The GC activities of a high-GC flow can 
unfairly block flash transactions of a low-GC flow



Summary: Source of Unfairness in SSDs

 Four major sources of unfairness in modern SSDs
1. I/O intensity
2. Request access patterns
3. Read/write ratio
4. Garbage collection demands
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OUR GOAL

Design an I/O request scheduler for SSDs that
(1) provides fairness among flows

by mitigating all four sources of interference, and
(2) maximizes performance and throughput
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 FLIN is a three-stage I/O request scheduler
• Replaces existing transaction scheduling unit
• Takes in flash transactions, reorders them, sends them to flash channel

 Identical throughput to state-of-the-art schedulers
 Fully implemented in the SSD controller firmware

• No hardware modifications
• Requires < 0.06% of the DRAM available within the SSD



 Stage 1: Fairness-aware Queue Insertion
relieves I/O intensity and access pattern interference
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 Stage 1: Fairness-aware Queue Insertion
relieves I/O intensity and access pattern interference

 Stage 2: Priority-aware Queue Arbitration
enforces priority levels that are assigned to each flow by the host
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 Stage 1: Fairness-aware Queue Insertion
relieves I/O intensity and access pattern interference

 Stage 2: Priority-aware Queue Arbitration
enforces priority levels that are assigned to each flow by the host

 Stage 3: Wait-balancing Transaction Selection
relieves read/write ratio and garbage collection demand interference

Three Stages of FLIN
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Evaluation Methodology

Detailed SSD Simulator: MQSim [FAST 2018] 
• Protocol: NVMe 1.2 over PCIe
• User capacity: 480GB
• Organization: 8 channels, 2 planes per die, 4096 blocks per plane,

256 pages per block, 8kB page size

 40 workloads containing four randomly-selected storage traces
• Each storage trace is collected from real enterprise/datacenter applications:

UMass, Microsoft production/enterprise
• Each application classified as low-interference or high-interference
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Download the Simulator and FAST 2018 Paper at
http://github.com/CMU-SAFARI/MQSim



 Sprinkler [Jung+ HPCA 2014]
a state-of-the-art device-level high-performance scheduler

 Sprinkler+Fairness [Jung+ HPCA 2014, Jun+ NVMSA 2015]
we add a state-of-the-art fairness mechanism to Sprinkler
that was previously proposed for OS-level I/O scheduling
• Does not have direct information about the internal resources and 

mechanisms of the SSD
• Does not mitigate all four sources of interference

Two Baseline Schedulers
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FLIN Improves Fairness Over the Baselines

Page 29 of 34

0.0
0.2
0.4
0.6
0.8
1.0

25% 50% 75% 100%

Fa
irn

es
s

Fraction of High-Intensity Traces in Workload

Sprinkler Sprinkler+Fairness FLIN

FLIN improves fairness by an average of 70%,
by mitigating all four major sources of interference



FLIN Improves Performance Over the Baselines
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FLIN improves performance by an average of 47%,
by making use of idle resources in the SSD and 

improving the performance of low-interference flows



Other Results in the Paper

 Fairness and weighted speedup for each workload
• FLIN improves fairness and performance for all workloads

Maximum slowdown
• Sprinkler/Sprinkler+Fairness: several applications with 

maximum slowdown over 500x
• FLIN: no flow with a maximum slowdown over 80x

Effect of each stage of FLIN on fairness and performance

 Sensitivity study to FLIN and SSD parameters

Effect of write caching
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Conclusion

Modern solid-state drives (SSDs) use new storage protocols
(e.g., NVMe) that eliminate the OS software stack
• Enables high throughput: millions of IOPS
• OS software stack elimination removes existing fairness mechanisms
• Highly unfair slowdowns on real state-of-the-art SSDs

FLIN: a new I/O request scheduler for modern SSDs designed to 
provide both fairness and high performance
• Mitigates all four sources of inter-application interference

» Different I/O intensities
» Different request access patterns
» Different read/write ratios
» Different garbage collection demands

• Implemented fully in the SSD controller firmware, uses < 0.06% of DRAM 
• FLIN improves fairness by 70% and performance by 47% compared to a 

state-of-the-art I/O scheduler (Sprinkler+Fairness)
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