
Architected for Performance

NVMeTM over Fabrics: What’s new in 1.1
Sponsored by NVM Express™ organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards

2

Speakers

Sagi Grimberg David BlackFred Knight

TCP Transport Discovery,
Flow ControlMulti Pathing

Architected for Performance

NVMe-oFTM 1.1:
TCP Transport for NVMe-oF

Sagi Grimberg

Chief Software Architect, Lightbits

4

Why Do We Need Another NVMeTM Transport?

▪ PCIe ®

▪ Great for direct attached NVMeTM SSDs

▪ Does not scale well to large topologies

▪ FC and RDMA (Infiniband, RoCE, iWARP)
▪ Provides a high degree of scalability, but requires special networks and hardware

▪ TCP
▪ Ubiquitous (does not require special networks or hardware)

▪ Scalable allowing large scale deployments and operation over long distances

▪ Can provide performance (throughput and latency) that is comparable to direct
attached NVMe SSDs

5

NVMe-oFTM Transport Taxonomy

6

NVMeTM/TCP Queue Mapping

7

NVMeTM/TCP PDU Structure

8

NVMeTM/TCP Protocol Data Units (PDUs)
PDU Group PDU Name PDU Direction Description

Initialize
Connection

ICReq Host to Controller
Initialize Connection Request: A PDU sent from a host to a
controller to communicate NVMeTM/TCP connection parameters and
establish an NVMe/TCP connection

ICResp Controller to Host
Initialize Connection Response: A PDU sent from a controller to a
host to accept a connection request and communicate NVMe/TCP
connection parameters

Terminate
Connection

H2CTermReq Host to Controller
Host to Controller Terminate Connection Request: A PDU sent
from a host to a controller in response to a fatal transport error

C2HTermReq Controller to Host
Controller to Host Terminate Connection Request: A PDU sent
from a controller to a host in response to a fatal transport error

Capsule
Transfer

CapsuleCmd Host to Controller
Command Capsule: A PDU sent from a host to a controller to
transfer an NVMe over fabrics command capsule

CapsuleResp Controller to Host
Response Capsule: A PDU sent from a controller to a host to
transfer an NVMe over fabrics response capsule

Data Transfer

H2CData Host to Controller
Host to Controller Data: A PDU sent from a host to a controller to
transfer data to the controller

C2HData Controller to Host
Controller to Host Data: A PDU sent from a controller to a host to
transfer data to the host

R2T Controller to Host
Ready to Transfer: A PDU sent from a controller to a host to
indicate that it is ready to accept data

9

Connection Establishment
▪ Stage 1: TCP Connection Establishment

̶ General TCP parameters

▪ Stage 2: NVMeTM/TCP Connection Establishment
̶ Parameter Negotiation

̶ Features Support

▪ Stage 3: NVMe-oFTM Connection Establishment
̶ Controller Binding

̶ Queue Sizing

10

Data Transfer – Controller to Host

▪ Host issues a Command Capsule PDU
̶ Contains the NVMeTM command

▪ Controller sends the Data payload to the host
̶ Using one or more C2HData PDUs

▪ Controller sends a Response Casule PDU
̶ Usually the NVMe completion entry

11

Data Transfer – Host to Controller (in-capsule)

▪ Host issues a Command Capsule PDU
̶ Contains the NVMeTM command

̶ Contains in-capsule Data
• As supported by the Controller

▪ Controller sends a Response Casule PDU
̶ Usually the NVMe completion entry

12

Data Transfer – Host to Controller (out-of-capsule)

▪ Host issues a Command Capsule PDU
̶ Contains the NVMeTM command

▪ Controller sends a “Ready to Transfer” (R2T) solicitation
̶ Host must support at least oneR2T per Command Capsule

▪ Host sends Data payload for that R2T using one or more
H2CData PDUs

▪ Controller sends a Response Casule PDU
̶ Usually the NVMe completion entry

13

Header and Data Digest

▪ PDU Data integrity for both header and PDU Data

▪ Both Header and Data Digests are calculated using
CRC32C (http://www.rfc-editor.org/rfc/rfc3385.txt)

▪ Generated by the sender and verified by the receiver

▪ Header Digest protects the PDU header it trails
̶ Common Header (8 bytes)

̶ Type-Specific Header (Variable Size)

▪ Data Digest protects the PDU Data payload it trails
̶ Exists only for PDUs that contain Data payload

14

NVMeTM/TCP Errors

▪ NVMeTM/TCP Non-Fatal Error
̶ An error that may affect one or more commands,

but from which the transport is able to recover and
continue normal operation

̶ Commands affected by a non-fatal error are
completed with a “Transient Transport Error”
status code

▪ NVMe/TCP Fatal Error
̶ An error from which the transport is not able to

recover and continue normal operation
̶ Fatal errors are handled by terminating the

NVMe/TCP connection

Architected for Performance

NVMe-oFTM 1.1:
Multi Pathing Improvements

Frederick Knight

Principal Engineer, NetApp

16

Multi-Pathing Improvements
NVMeTM Multi-Pathing improvements (2 TPs)

▪ Primary use case is in NVMe-oFTM Fabrics
▪ Basic commands in the NVMe Base spec (not fabric only commands)
▪ Result: Enable additional NVMe-oF implementations

2. Asymmetric Namespace Access (TP 4004)
▪ Inform hosts about access characteristics of namespaces
▪ Already included in Rev 1.4

3. Domains and Divisions (TP 4009)
▪ Large NVM Subsystems
▪ In 30-day member review

17

Single-Pathing
Original design of NVMeTM 1.0 had only single pathing

• Everything worked, or nothing worked

Namespaces are accessed through one controller
• Multiple controllers cannot be used to access the namespace

18

Single-Pathing
Original design of NVMeTM 1.0 had only single pathing

• Everything worked, or nothing worked

Namespaces are accessed through one controller
• Multiple controllers cannot be used to access the namespace
• Any problem on the path stops access

19

Examples

Most SSDs are single port, and
therefore single path; some recent
devices have added multiple ports

20

Multi-Pathing: Symmetric Access
Revision 1.1 added multiple access capability

• Multi-pathing
• Single host with multiple access paths
• Requires multiple controllers

• Shared namespace
• Multiple hosts with one or more access paths each
• Requires multiple controllers

First controller/path redundancy; allows partial failures
Assumption that access characteristics through each controller to the NVM are
the same.

• It doesn’t matter which controller is used by the host
• Discovered via CMIC + NMIC fields

21

Multi-Pathing: Redundancy and Performance

22

Multi-Pathing: Asymmetric Access

TP4004 added Asymmetric Namespace Access (in Rev 1.4)

Removes assumption that access characteristics through controllers to the
NVM are the same; controllers provide:

• Optimized access
• Non-Optimized access
• Inaccessible access

Hosts use these characteristics to provide redundancy and best access. Now,
the host cares which controller is used to access a namespace.
Also allows partial failures
Discovered via CMIC field

23

Multi-Pathing: Asymmetric Access

To
ll B

oo
th

 A
he

ad
To

ll
Bo

ot
h

Ah
ea

d

24

Ex
a
m
pl
e

25

Head 1 contains:
Controller 1
NVM for Namespace 1

 Fabric connections from Host

Inter-connect mechanism

Head 2 contains:
Controller 2

26

Asymmetric Storage System - Logical View
Host connections are via Host Port 1 and

Host Port 2
Heads are physical boxes that contain Host

Ports, controllers, and NSs – Head 1 and
Head 2 are connected using an
Inter-connect mechanism

The Controllers perform operations on the
Namespaces

Operations from Host Port 2 must pass
over the interconnect – acting like
a toll booth

Host Port
1

Host Port
2

Head 1 Head 2

Namespace
1

Controller 2Controller 1

27

Asymmetric Storage System - Logical View
Commands via Port 1 are “Optimized”
Commands via Port 2 are “Non-Optimized”
If there are additional Heads that are not

connected, the controllers in those Heads
are “Inaccessible”

Head 3 is disconnected for maintenance

Host Port
1

Host Port
2

Head 1 Head 2

Namespace
1

Controller 2Controller 1

Head 3

28

Asymmetric in the NVMeTM Specification

29

Multi-Pathing Improvements
NVMeTM Multi-Pathing improvements (2 TPs)

▪ Primary use case is in NVMe-oFTM Fabrics
▪ Basic commands in the NVMe Base spec (not fabric only commands)
▪ Result: Enable additional NVMe-oF implementations

2. Asymmetric Namespace Access (TP 4004)
▪ Inform hosts about access characteristics
▪ Already in Rev 1.4

3. Domains and Divisions (TP 4009)
▪ Large NVM Subsystems
▪ In 30-day member review

30

Domains and Divisions
A Domain is the smallest indivisible unit within the

NVM subsystem that shares state – For example:
• Power state – each domain may be powered independently
• Capacity information – each domain may have individual capacity
• Fault characteristics (there may be fault boundaries between domains)

Whole NVM subsystem state has been eliminated (scoped to domain)

Division is an event or action affecting communication between domains
• While present – global state may not be available
• Requires error codes from TP4004 for reporting

31

Domain 1

Domain 2

Domain 3

Domain 4

32

Domains and Divisions
Benefits for large NVM subsystems -
Scalability
Enables Non-Disruptive Rolling Maintenance

• Partial shutdown, perform maintenance, restore power

Enables Non-Disruptive Upgrades and Migration
• Add new domain (new hardware), shutdown and remove old domain (old

hardware)

Enable Host detection of Domains
• Enhance host redundancy and performance

33

Summary
Asymmetric Namespace Access (TP 4004)

▪ Allow Host to determine access characteristics
▪ Notify host of access characteristic changes
▪ Already included in Rev 1.4

Domains and Divisions (TP 4009)
▪ Allow detection of Fault Boundaries
▪ Enhances Non-Disruptive operation
▪ In 30-day member review Image Credit: Conmongt

Needpix.com

Architected for Performance

NVMe-oFTM 1.1:
Discovery & Transport Improvements

David L. Black, Ph.D.

Senior Distinguished Engineer, Dell EMC

35

Discovery & Transport Improvements
NVMe-oFTM framework improvements (3 TPs)

▪ Result: Improved NVMe-oF implementations

2. Discovery: Persistent Controller (TP 8002)
▪ Notify hosts when fabric configuration changes

3. Transport: Fabric I/O Queue Deletion (TP 8001)
▪ Without terminating host-controller association

4. Transport: End-to-End Flow control (TP 8005)
▪ Alternative to Submission Queue Flow Control

Image Credit: Nick Youngson,
Alpha Stock Images

Image Credit: NOAA
Wikimedia Commons

36

Discovery: Persistent Controller
Fabrics discovery: Discovery Controller

1) Host obtains NVM subsystem and fabric port info
2) Host contacts those NVM subsystems via those ports

Original design (NVMe-oFTM) 1.0: One-shot
▪ Host disconnects after obtaining initial info

Design motivation: What if that info changes?
Solution: Persistent Discovery Controller

▪ Host retains connection to Discovery Controller
▪ Async event sent to host if discovery info changes

Host response to async event: Repeat discovery
▪ Important scenario: Fabric port added
▪ Host sees new Discovery Log Page entry for new port

37

Transport: Fabric I/O Queue Deletion

NVMeTM Controller interface: Admin and I/O Queues
▪ I/O Controller: 1 Admin Queue & 1+ I/O Queues
▪ NVMe/PCIe: Create and Delete I/O Queue commands

NVMe over Fabrics: I/O Queue Management
▪ NVMe-oFTM 1.0: Create I/O Queues (Connect command)

▪ Can’t delete individual I/O Queues
▪ NVMe-oF 1.1: Delete I/O Queues (new Disconnect command)

▪ Command sent on I/O Queue to be deleted (like Connect)
▪ Disconnect: I/O Queue only, not Admin Queue

– Only 1 Admin Queue, host loses contact with controller if deleted

Enables dynamic I/O Queue resource management

Image Credit: Nikin
Needpix.com

38

Transport: Fabric I/O Queue Termination - Bonus

Additional Functionality: Transport I/O Error Containment
▪ While we were in there …

Motivation: Unrecoverable I/O error, e.g., data corruption
▪ NVMe-oFTM 1.0: Terminate entire host-controller association

▪ All fall down, start over with Connect command for Admin Queue
▪ NVMe-oF 1.1: Limit error impact to specific I/O Queue

▪ Terminate that I/O Queue (involuntary disconnect)
▪ Not always possible, simplifies host recovery when possible

Transport I/O Error Containment: Negotiated when Admin Queue created
▪ Usable only when both host and controller support

Image Credit: CERT
Wikimedia Commons

39

Discovery & Transport Improvements
NVMe-oFTM framework improvements (3 TPs)

▪ Result: Improved NVMe-oF implementations

2. Discovery: Persistent Controller (TP 8002)
▪ Notify hosts when fabric configuration changes

3. Transport: Fabric I/O Queue Deletion (TP 8001)
▪ Without terminating host-controller association

4. Transport: End-to-End Flow control (TP 8005)
▪ Alternative to Submission Queue Flow Control

Image Credit: NOAA
Wikimedia Commons

40

Completion Queue
Head Doorbell

Submission Queue
Tail Doorbell

Background: NVMeTM Command Queues

Decouple host and controller

• Submission Queue (SQ): Submit
commands to controller

• Completion Queue (CQ): Return
completions to host

Queue occupancy:

• Enqueue at Tail

• Dequeue at Head

• Return entries for reuse

Image credit: Intel and NVM Express

41

NVMeTM Flow Control: Overview
NVMeTM/PCIe: Recipient manages queue occupancy

▪ Advance Queue Head to allow more commands to be submitted
▪ Queue Head not automatically advanced by command processing
▪ Queue Head advancement mechanism: Direction-specific

▪ Submission Queue: Head pointer update in each command completion
▪ Completion Queue: Host rings PCIe doorbell with updated Head pointer

NVMe-oFTM flow control: Submission only, no completion flow control
▪ Host has to be able to handle completions for all outstanding commands
▪ If host can’t handle more completions, host pauses submitting commands

NVMe-oF Transports use lower level flow control mechanisms (e.g., TCP)

42

NVMe-oFTM: End-to-End Flow control
Submission Queue: Head pointer update in each command completion

▪ Head pointer state maintained at host & controller
▪ Fabric required to deliver completions in order
▪ Prevents optimization for successful reads (common case)

▪ From iSCSI: Set “It worked!” bit on last read data transfer

NVMe-oFTM: End-to-End flow control: Omit submission flow control
▪ Size both SQ and CQ to maximum # of outstanding commands

▪ Tradeoff: Static transport queue resources (not dynamic)
▪ Flow control mechanism negotiated by Connect command

▪ Resource management may vary across implementations
• Enables transport and implementation optimizations

43

Summary
Persistent Discovery Controller (TP 8002)

▪ Notify host of fabric changes after initial discovery

Fabric I/O Queue Deletion (TP 8001)
▪ Dynamically manage I/O Queue resources
▪ Bonus: Transport I/O Error Containment

End-to-End Flow Control (TP 8005)
▪ Transport and implementation optimizations
▪ Applies to all three NVMe-oFTM Transports (RDMA, FC, TCP)

Image Credit: Conmongt
Needpix.com

Architected for Performance

