

"The bitterness of poor quality remains long after the sweetness of low price is forgotten."

- Benjamin Franklin -

Santa Clara, CA August 2019

hyper**ston**e*

The key to **Designing Reliable Storage Systems Axel Mehnert VP Marketing & Strategy** EMBD-101-A-1: Embedded Applications, Part 1 - Drive Design

System Level Reliability

- Some quality needs to be by-design
- Our design and reliability target: Highest correction performance with guaranteed error floor

hyper**ston**e

• UBER at no less than 1x10⁻¹⁶ worst case

Lifetime RBER

Cross-temp program at -40°C read at different temperatures

After calibration, RBER between 2x10⁻⁴ and 2x10⁻³ (EOL & worst case)

Typical ECC performance plots

"LDPC Code Concepts and Performance on High-Density Flash Memory", Erich F. Haratsch, Flash Memory Summit 2014

hyperston€ ₅

Where exactly is the error floor of the ECC you are using?

"LDPC Code Concepts and Performance on High-Density Flash Memory", Erich F. Haratsch, Flash Memory Summit 2014

RBER

RBER

RAID vs. TempRAID

RAID (permanent)

Block A	Block B	Block C	Block D
User data	User data	User data	Parity

TempRAID

Keep pSLC blocks with RAID as backup until TLC block is successfully written

- WAF increase
- Performance impact
- RAID is not always the solution

RAID vs. TempRAID

Protection Mechanism	Capacity Impact	Recovery Time	Protection Strength
Read-Verify (temporary SLC RAID)	None	Small	High (if low error-floor ECC is used)

Summary

- Pushing ECC performance to higher RBER may introduce a higher error floor
- RAID as countermeasure to higher UBER is costly (WAF, capacity, performance)
- Low-Error-Floor ECC (e.g. GCC)
 - Allows cheaper and reliable countermeasure (Read-Verify)

hyper**ston**e`

Allows different/less-overhead RAID structures

Final Thoughts...

Your key take away for the summit

- Watch for the error floor
- Is UBER plotted down to 10⁻¹⁶ and beyond?
- Don't trust dotted lines those may be based on assumptions

"Small things make perfection, but perfection is no small thing"

- Henry Royce -

Santa Clara, CA August 2019

hyperston€° 15

The secret to Designing Reliable Storage Systems

Additional Information

System Level Reliability Tests

Flash Memory Summit

- Subsequent full drive writes (cycles) / drive reads (drive reads plotted in [s])
- Read errors are tracked, first one is highlighted
- Test stops at first failed write command
- 10x difference in lifetime of different SSDs!

315 640 310 630 time [s] [s] 305 300 610 295 600 2000 4000 6000 8000 10000 12000 0 cycle seq. READ whole device 1800 first read error 700 1600 600 1400 500 increase from [S] time [s] 1200 ime read-retrv 400 1000 300 800 200 600 100 400 200 400 600 1200 1400 800 1000 0 cycle

seq. READ whole device

Santa Clara. CA August 2019

hyper**ston**e* 17

Calibration can be carried out by firmware in configurable intervals during operation

Santa Clara, CA August 2019

hyperston€ 18

Error Correction

Santa Clara, CA August 2019 Source: "An Efficient Algorithm for Finding Dominant Trapping Sets of LDPC Codes" Mehdi Karimi, Student Member, IEEE and Amir H. Banihashemi, Senior Member, IEEE

- LDPC codes are not simulated down to JEDEC specified rates (= 10^{-16} for enterprise), but only down to ~ 10^{-10}
- For the further trend methods like "importance sampling" are used where a small subset of the codewords is used for estimation
 - This educated guess is an orientation but nothing that can be relied on!

hyperston€ 19

Error Correction

(6,32)-regular LDPC code with construction field $GF(2^8)$, and the (4032,3307) RS-based Gallager (60,63)-regular quasi-cyclic LDPC code with construction field $GF(2^6)$.

"A Class of Low-Density Parity-Check Codes Constructed Based on Reed-Solomon Codes With Two Information Symbols", Ivana Djurdjevic, Jun Xu, Khaled Abdel-Ghaffar, *Member, IEEE*, and Shu Lin, *Fellow*, *IEEE*, IEEE COMMUNICATIONS LETTERS, VOL. 7, NO. 7, JULY 2003

Error Correction

- LDPC
 - High performance
 - Error-floor unknown estimation only (e.g. importance sampling)
 - Full simulation not feasible
 - Many different "quality" grades depending on implementation and alignment to specific Flash technology and channel model
- Generalized Concatenated Code (GCC)
 - High correction performance
 - Error-floor: analytical determination possible
 - Low-Error Floor
 - Guaranteed correction capability

- Two definitions
 - Scientific: Uncorrectable Bit Error Rate a statistic measure of the probability of one erroneous bit after processing in the the ECC unit (module level).
 - JEDEC: $UBER = \frac{number of data \, errors \, (sectors)}{number of bits read}$ during the TBW rating limit of the drive (sector errors of the whole system).
 - Large difference between the two depending on the ECC frame size and system sector size

Reliability Enhancement Techniques

Technique	Impact on Average Read Performance	Impact on Trail Performance (Read)	WAF	Management Overhead
ECC (hard-decision)				None
ECC (soft-decision)				Negligible
Read Retry				Voltage levels
Flash Calibration				None
RAID (3:1)				Medium
RAID (127:1)				Low
Temporary RAID (e.g. Read-Verify)				Medium
Dynamic Data-Refresh Santa Clara,				Low
CA August 2019				hyper ston €°23

E2E Data-Path Protection

- Protection against radiation (single event effects)
- Detection & correction of errors in the main memory
- Comprehensive protection of the complete datapath

Santa Clara, CA August 2019

hyper**ston**€° 24

RBER – Lifetime Monitoring

http://www.hySMART					
File Device ATA Identify Device ATA SMART Hyperstone Vendor Data Log					
Device: 01 - HYPER FLASHDISK \$ Disconnec	t Refresh Data Save All Data				
Device List Device Status ATA Id. Dev. Target Info Life Time Info FW Version SMART Data SMART Attr. Thr. Remap Wear Level Log					
- Spare Block Information					
Number Remaining Spare Blocks (All Chips): 89 [of 89])				
Percentage Remaining Spare Blocks (All Chips): 100 0	100				
Number Remaining Spare Blocks (Worst Chip): 89 [of 89]					
Percentage Remaining Spare Blocks (Worst Chip): 100 0	100				
Erase Block Information - Remaining Card Life Percentage Remaining Card Life: 100 10 100 100 100 100 100 100 100 100					
ECC Error Information - Number of ECC Errors					
Total w/o Startup: 8030141 Correctable: 8030141 Uncorrectable: 0					
Total Startup: 119714 Correctable: 119714 Uncorrectable: 0					
ECC Error Histogram - 40 bit ECC					
0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Device: connected - State: OK - SMART: support	orted enabled Threshold: not exceeded				

With the Hyperstone **hySMART** tool you can monitor the corrected bit errors during lifetime to be confident your system works within operating conditions and to predict lifetime for your specific use-case and mission profile.

hyReliability FlashXE®

Santa Clara, CA August 2019

hyper**ston**€°26