

Annual Flash Controller Update

David McIntyre

@DavidSMcIntyre
#flashmem

1:1 Mtgs Text FMS to (408) 772-7044

Data Center Drivers
 Memory Hierarchy Drivers
 Flash Controller Challenges
 Supporting Technologies

Data Center Trends

Hyper Converged Infrastructure

- Integrated Compute/Storage/Networking
- Massive interconnectivity (25Gb to 100Gb)
- Software managed virtualized resources

Hyper Scale

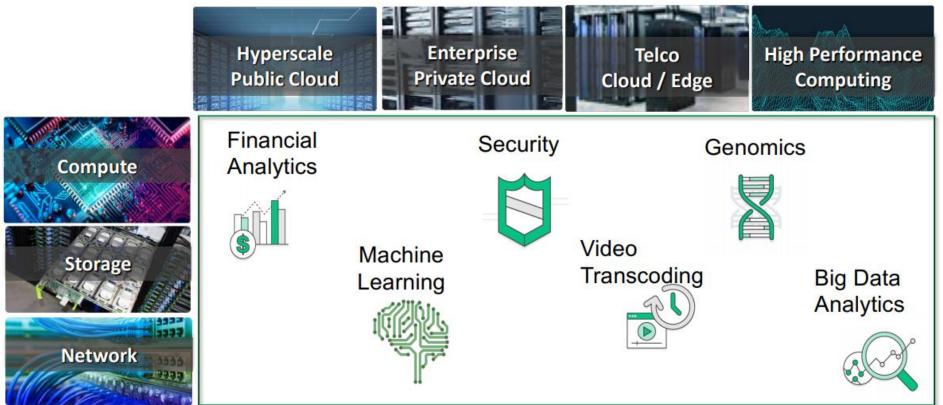
- Independent scaling of compute and storage resources
- Good for elastic workloads, e.g. Hadoop, NoSQL
- Acceleration As a Service

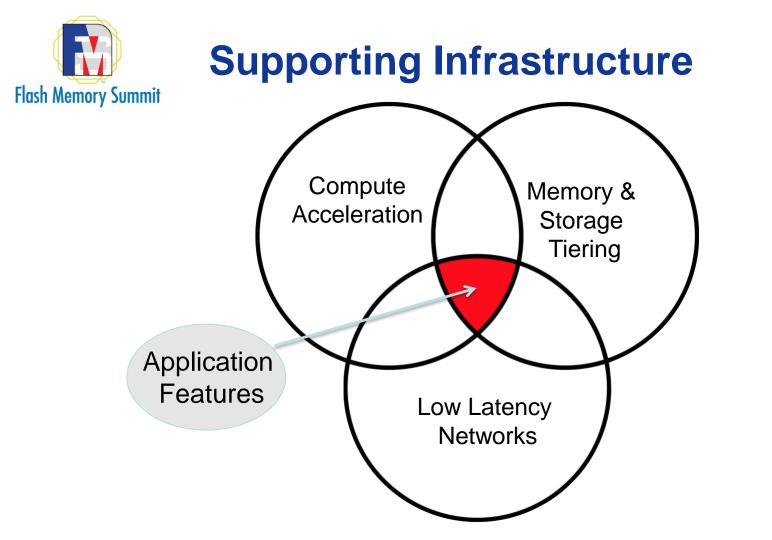
Hyperscaler Priority

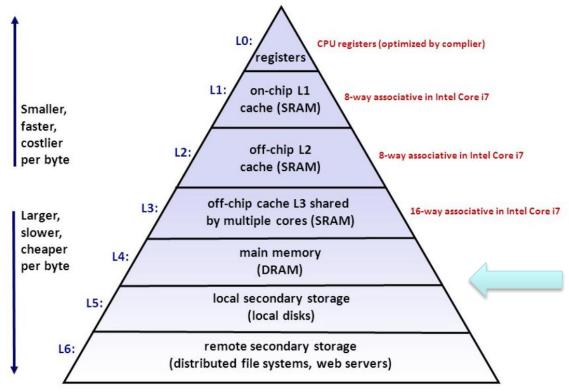
Hyperscale in 2020

By 2020,	Today:	
47%	of all data center servers	21%
68%	of all data center processing power	39%
57%	of all data stored in data centers	49%
53%	of all data center traffic	34%
dialo	© 2016 Cisco and/or its affiliates. All rights reserv	ed, Cisco Confidential

 Flash controllers must support hyperscale requirements (deterministic latency, performance/watt, endurance, reliability)

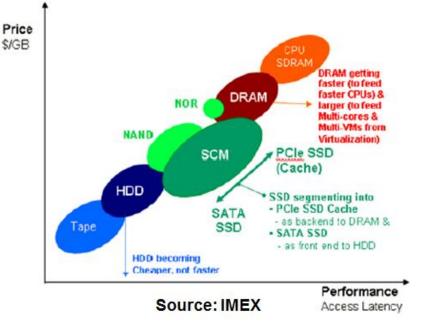

Data Center Trends


- Storage
 - Computational Storage
 - Convergence of RAM/cache and SCM
 - NVDIMM N and P
 - NVMe-oF, NVMe/TCP
- Compute
 - GPU, TPU and FPGA accelerators
- Networking
 - Low latency, high performance RDMA networks
 - 100Gbps+
- Hybrid Cloud
 - For lease and on premises-equipment


Data Center Applications

Memory and Storage Tiering

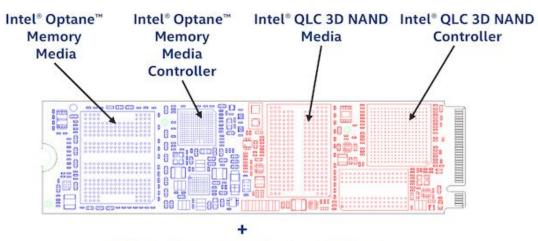
Flash Memory Summit



Flash System Challenges

Error correction costs increasing

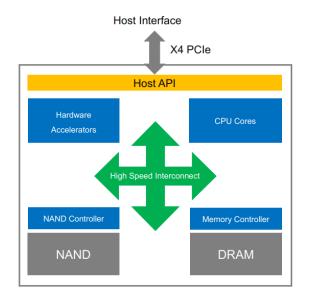
- Endurance limits
- Slow write speeds continue
- IO bottlenecking
- Emerging NV technologies (MRAM, PCM, RRAM)
- Form Factors (M.2, EDSFF (E1.x, E3.x))


Price/Performance Gaps in Storage Technologies

Controller Trends- Intel Optane

Separate Media Controllers

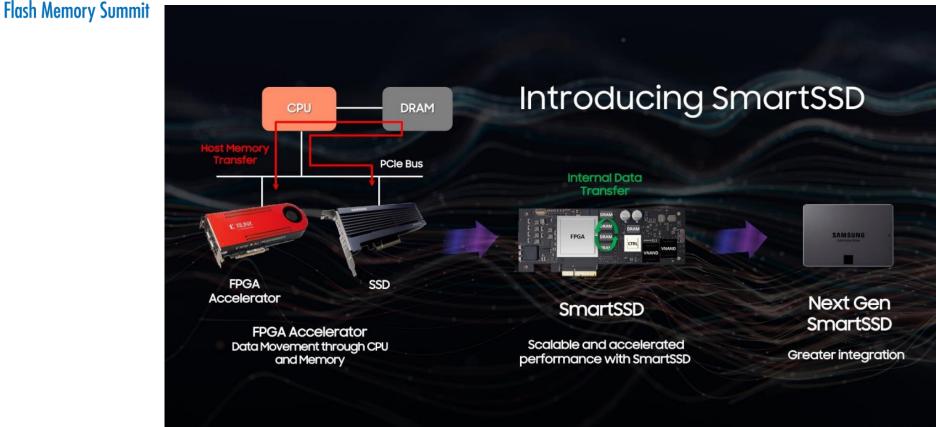
- Silicon Motion SM2263: 1TB QLC NAND
- Intel SSL3D: 32 GB Optane


Intel® Rapid Storage Technology Software

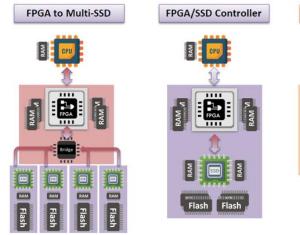
Computational Storage

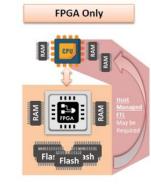
- Tightly coupled CSSD
 - Embedded CPU Cores
 - Hardware Accelerators
 - Memory

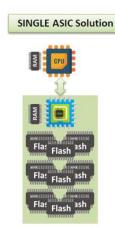
Flash Memory Summit

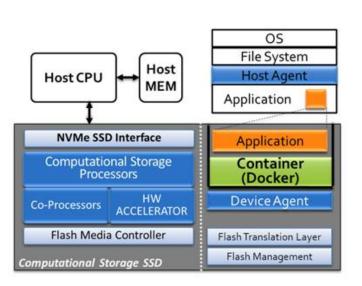

- NAND Flash
- Purpose-built data paths
 - Any to any connectivity
 - 10X-100X Internal Bandwidth
- Distributed, Scale-out model

Adaptive Storage Acceleration

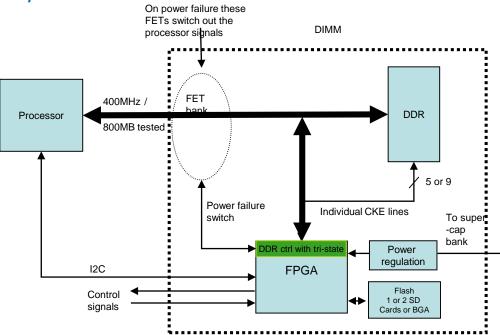

- Encryption
- Compression
- Data Dedupe
- RAID & Erasure codes
- Key-Value Offloads
- Database ETL & Query Offloads
- Spark-SQL / Map-Reduce
- Video / Image Transcoding, Processing and Delivery
- Search Text, Image, Video etc.
- Stats / Counters
- Machine Learning

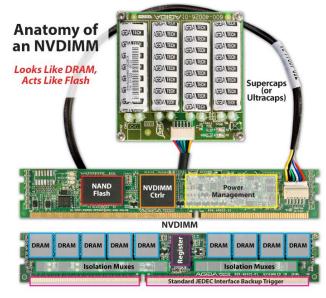

Computational Storage- Smart SSD





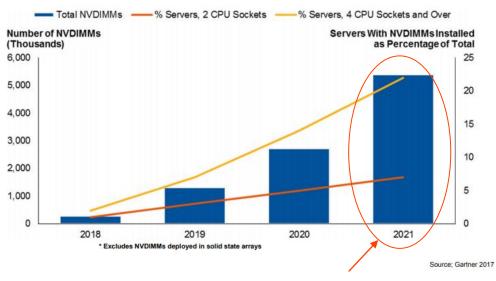
Computational Storage Controller Options


Source: NVMexpress.org (both graphics)



- SOC Integrated solution
- Hybrid Controller- SCM caching
- Deterministic Latency
- Flash Density and Performance (3D QLC)
- Byte addressable
- Opportunity for NAND to support load/store-driven data center applications (e.g. NVDIMM-P)

NVDIMM-N Controller Architecture



Backup and Restore Solution Courtesy of Agigatech

- > NVDIMM-P
 - High capacity, transactional access DDR4/DDR5
 - Persistent memory
- Supported applications
 - Database caching
 - Enterprise storage
 - High Performance computing

NVDIMM-P Target

Controller Options

Technology scaling favors programmability and parallelism

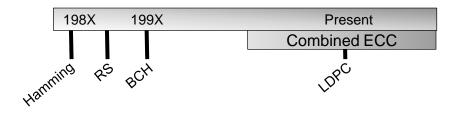
			5 + 9 array of brist		
CPUs	DSPs	Multi-Cores	ASICs	GPGPUs	FPGAs
Single Cores	Multi-Co Coarse-(CPUs an	Grained	Fixed Design Efficient Performance	Massively Parallel Processor Elements	Massively Parallel Programmable Logic and SOC attributes

Flash Controller Technology Options

- Data center metric is performance/watt
- Performance, power efficiency and flexibility is required to support data center applications

Technology Comparison

Technology	Pros	Cons
CPU	Well established products	Limited cores for parallel processingPower consumption
FPGA	Heterogeneous parallel processing Performance/Watt Flexibility	 Rudimentary development environment Inefficient per unit costing
GPU	Same task parallel processing Developer ecosystem	 Power consumption Leading variable types
ASIC	Highest Performance	High NRECustom design
ASSP	Custom Performance	Limited functionality

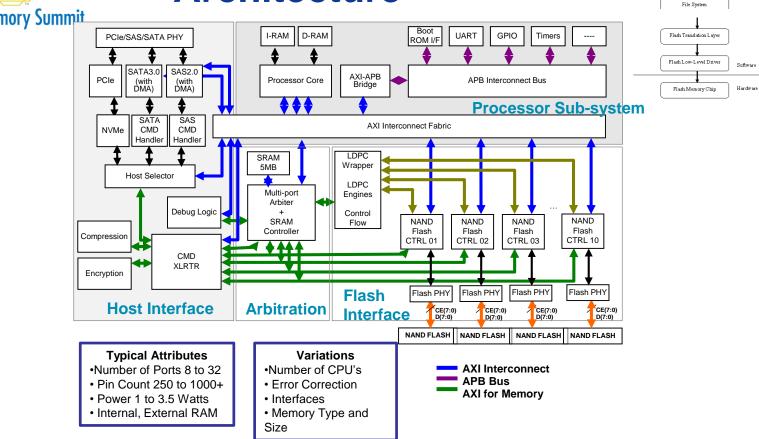

Error Correction Overview

Driving Factors for New ECC

- Increasing Bit errors in NAND Flash
- Soft error occurrences
- Decrease in write cycles
- RS, BCH overhead for data and spare area
- Increase use of Metadata in file systems
- Correction Overhead
- Gate count
- Requirement for no data loss

Comparing ECC Solutions

Features	BCH	LDPC
Gate Count	Low	Mid
Latency	Low	Medium
Tuneablity	low	high
Soft Data	No	Yes

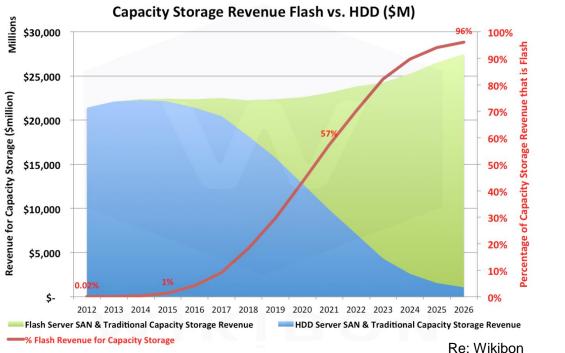


Flash Controller Support

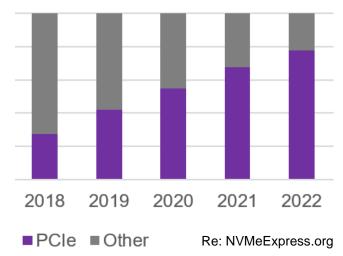
IP	Ю	Speed	Logic Density	Comments
ONFI 4.1	40 pins/ch	1200MT/s	5KLE/ch	NAND flash control, wear leveling, garbage collection
DDR4/5		6.4 Gbps	10KLE	Flash control modes available for NVDIMM
PCM			5KLE	PCM- Pending production \$
MRAM			5KLE	MRAM- Persistent memory controller
BCH			<10KLE	Baseline ECC standard
LDPC			50KLE+	Increased performance for FPGAs
PCIe	Gen 4x8	16 GT/s	HIP	Flash Cache

Typical SSD Controller Architecture

Coherent Networks Roadmap

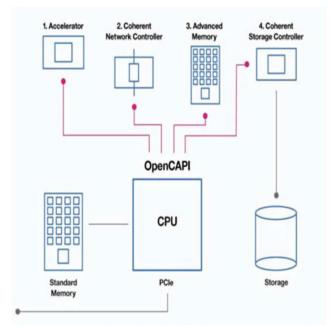

Cache coherency will continue to expand into SCM into SSD caches

NEAR			FAR		
НВМ	DDR	Accelerator / Local SCM	Chassis SCM	Rack Pooled SCM	Messaging
		PCle Phy CCIX	Future Spec	Rev	
	г - 18 С	302.3 short and long haul Phy	Gen-Z		₁
	- 8 _	^{02.3 Phy} OpenCAPI	Future Spec Rev	F	Re: OFA.org


Flash Memory Summit 2019 Santa Clara, CA

Flash Memory Summit

Changing of the Guard



Controller Challenges Summary

- Host Interface IO
 - Gen Z, CCIX, OpenCAPI
 - PCIe Gen 5
 - NVMe-oF and NVMe/TCP
- > Application Requirements
 - Deterministic latencies
 - Load/Store vs Block
 - Performance
 - Endurance
- Hybrid Control
 - 3D NAND, 2D NAND
 - Cache: 3DXpoint, MRAM

Flash Control has extended into tiered subsystem management

- Caching has extended into SCM, necessitating hybrid control
- IO interfaces need to support fabric
- Advancing geometries and process technologies require more and advanced error correction
- Hyperscaler applications demand load/store performance with deterministic latency

Annual Flash Controller Update

David McIntyre

Text **FMS** to (408) 772-7044