

Fast Integration and Furious Performance with Zoned Flash drives

Robert Lercari V.P. Engineering Radian Memory Systems, Inc.

Legal

This presentation and/or accompanying oral statements by Radian Memory Systems, Inc. ("RMS") representatives collectively, the "Presentation", is intended to provide information concerning Flash memory technology. While RMS strives to provide information that is accurate and up-to-date, this Presentation may nonetheless contain inaccuracies or omissions. As a consequence, RMS does not in any way guarantee the accuracy or completeness of the information provided in this Presentation.

This Presentation may include forward-looking statements, including, but not limited to, statements about any matter that is not a historical fact; statements regarding RMS' intentions, beliefs or current expectations concerning, among other things, market prospects, technological developments, growth, strategies, and the industry in which RMS operates; and statements regarding products or features that are still in development. By their nature, forward-looking statements involve risks and uncertainties, because they relate to events and depend on circumstances that may or may not occur in the future. RMS cautions you that forward looking statements are not guarantees of future performance and that the actual developments of RMS, the market, or industry in which RMS operates may differ materially from those made or suggested by the forward-looking statements in this Presentation.

In addition, even if such forward-looking statements are shown to be accurate, those developments may not be indicative of developments in future periods.

Agenda

- Cooperative Flash Management (CFM) and Zoned Flash
- Zone Configuration and Address Space Layout (ASL)
- Solutions for Strict Write Pointers
- 'Apples to Apples' Performance Benchmark: Zoned Flash vs. FTL SSD

Cooperative Flash Management (CFM)

Redistribution of Flash Management between Host/Device

- Data Placement
- Leverages host segment cleaning for Garbage Collection
- Scheduling

- Wear Leveling
- NAND Maintenance
- Maintains device state
- Idealized Flash
- Configurable Addressing
- Offload process execution

Standard NVMe API plus vendor specific extensions

Cooperative Flash Management (CFM)

	ASL Configurator	
Symphonic Firmware		
	Space Mgt. Command Interface	
Wear Leveling	Configuration Mgt.	Geometry Emulation
force Handling	61994 Mar	Bubrothik

	Symphonic Firmware	
Garbage Collection	Space Mgt. Command Interface	Address Configurato
Wear Leveling	Configuration Ngt.	Geometry Emulation
Error Handling	State Met.	Fluids to Flash

2015

Symphonic Host Libraries and AM ASL Cerefigunator		
	Symphonic Firmware	
Garbage Collection	Space Mgt. Command Interface	Address Configurator
Wear Leveling	Configuration Ngt.	Geometry Emulation

2017

SMELL Drive

Radian Open Channel 2 Hest Ubraries All Configurator Radian Open Channel 2 Fermusze Radian Open Channel 2 Fermusze		

2018

ASL Configurator		
Garbage Collection	Space Mgt. Command Interface	Address Corfigurator
Wear Leveling	Configuration Mgt.	Geometry Emulation
Error Tarolina	State Mat.	Rub to fleib

2014

Symphonic v1

Demo'd CFM to leading Flash Fabs Symphonic v2

CFM and SMR

SMR-F SSD

Implementation for OC2 2018

Symphonic[™] v3

'All Firmware' implementation

 Badian Zoned Namespaces SSD Firmware

 Spice Migl.Communities
 ASI.Configuration

 Decoupted Wait Leving
 Geometry Emulation

 Emerging
 Minimeance

 Management
 Fluids to Fluids

2019

Zoned Flash

Zoned Flash

Radian Zoned Namespaces SSD Firmware		
Space Mgt.Command Interface	ASL Configurator	
Decoupled Wear Leveling	Geometry Emulation	
Error Handling Maintenance	State Management Flush-to-Flash	

- Idealized Flash
- ASL Configurator
- Decoupled Wear Leveling
 and NAND Maintenance
- Back Channel*
- Delegated Move offload*
- Zone Append*
- Relaxed Write Pointer

*Optional feature

Configurability

Address Space Layout (ASL)

- Performance
- Endurance
- Capacity

Iso-Region Dies form discrete, physically isolated regions

Iso-Box One or more iso-regions that can be associated with a namespace

Configurability

Radian[®]

Strict Write Pointer

- NAND requires sequential programming
- Tangled Ordering
- Performance Impact

Zone Append

Pros

- No Strict Write Pointer requirement
- Overcomes NAND addressing anomalies, geometry or vendor specific attributes
- No FTL L2P storage requirements .1%, 1GB mapping space for 1TB capacity

Cons

- · Modifications to host system software
- New consistency models
- Potential latency impact

Radian's Zone Append can support multiple, concurrent append request/completions

Host System Software

3

Host updates mapping table

Host sends data and specifies zone

SSD determines LBA in designated zone and provides it to host

Zoned Flash SSD

Relaxed Write Pointer

- Overcomes Tangled Ordering if
 host attempts to write sequentially
- No modifications to host software, no new consistency models or additional latency
- Minimal SSD memory (*not* 0.1% like L2P tables)

Testing Zoned SSDs

RMS-350

Zoned Flash U.2 NVMe SSD

- 2TB -16TB TLC Flash
- Two different NAND vendors/fabs
- User NV-RAM
- Single or Dual Port

How to test...

- Garbage Collection
- Endurance and Data Retention (e.g., JESD219 workloads)
- HA/Fault Tolerance (e.g., dual port, shorn writes)
- Performance and Comparative Performance Testing

- Provides support for in-place overwriting of zones (Conventional Zones)
- Log Structured design serializes random overwriting workload
- Performs segment cleaning (garbage collection) with Zone Reset

Apples to Apples Comparison

Zoned Flash U.2 NVMe SSD RMS-350

Identical Silicon

- Same SSD Processor
- Same Flash Array 3D TLC NAND Dies/Package # of Channels # of Packages/Channel 4.6TB Raw capacity
- Same DDR4 array DDR4 # of Devices

FTL U.2 NVMe SSD

FMS 2019 Santa Clara, CA

Flash Memory Summit

Overprovisioning (OP)

Equal for each SSD

FTL SSD	Zoned SSD
3.23TB	3.23TB
30%	30%
13%	27%
3.84TB	4.49TB
17%	3%
4.62TB	4.62TB
	FTL SSD 3.23TB 30% 13% 3.84TB 17% 4.62TB

Log-on-Log

- 70/30 Mix
- 4K Random Read
- 4K Random Write
- SSD Queue Depth = 32
 4 worker threads
 IOD = 8/thread

- Total Overprovisioning = 30%
- Single Namespace

99.99% Latency @ IOPS

- FTL SSD

Radian Zoned SSD

- 70/30 Mix
- 4K Random Read
- 4K Random Write
- SSD Queue Depth = 32

99.99% Latency @ IOPS Single Namespace, 25% OP and 30% OP

99.99% Latency @ IOPS Sixteen Namespaces, 30% OP

