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 Data storage is a story where density increases as innovations in 

physics lead to innovations in signal processing.

– Our focus here is on coding theoretic innovations.

 The density of data storage devices evolved as follows:

– Areal density is in 

gigabits per inch2.

 With the vertical NAND

(3D NAND), Flash devices

are already winning!

Data Storage Density Trends
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 We are living in the age of big data.

– The storage capacity of modern data centers is in the order of 

exabytes (1018 bytes) at least.

– SSDs and HDDs are now approaching 10 terabits per inch2!

 These high densities result in adding/exacerbating sources of 

errors in modern storage devices.

– Flash: Inter-cell interference (ICI) and wear-out.

Motivation of the Work
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 In Flash, data are stored in the form of charges in floating gate 

transistors that control their thresholds.

 The amount of charge can change because of many effects:

– ICI due to writing specific data patterns, e.g., 101 in SLC.

● Parasitic capacitances result in unintentional increase in charge levels.

– Device wear-out results in programming errors.

 Advanced coding techniques are used to mitigate these effects.

– Constrained codes [Qin 14] [Hareedy AL-19].

– Error-correcting codes (ECCs), which are our focus today.

Sources of Errors in Flash Devices
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Mission Statement of Coding Theorists

 Modern storage devices (both Flash and magnetic recording 

devices) operate at very low error rates.

– Effective ECC techniques are a must in order to enable storage 

engineers to use such dense devices with confidence.

– Graph-based codes offer great performance!

 Our mission is to provide effective ECC techniques exploiting the 

characteristics of the channels underlying storage devices.
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Modern Graph-Based Codes

 Spatially-coupled (SC) LDPC codes have capacity approaching 

performance. They also have complexity/latency advantages.

– We discuss a combinatorial approach to construct binary and non-

binary SC codes for Flash memories.

 We then illustrate a technique to design high performance multi-

dimensional (MD) graph-based codes.

– The technique couples multiple copies of optimized 1D (OD) 

graph-based codes in an informed manner.

 Why do we need these modern codes?

– Optimized SC codes outperform block codes of similar parameters.

– MD codes further increase the gains compared with longer OD 

codes, and they are suitable for MD devices.
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 Appropriately-designed graph-based codes offer great 

performance gains in Flash systems.

– Spatially-coupled codes.

● Gains compared with state-of-the-art SC codes.

– Multi-dimensional codes.

● Gains compared with one-dimensional (OD) codes.

Fast Forward to the Results
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 Coding is a tool to improve system performance:

– Through preventing errors.

– Through correcting errors.

Importance of Coding
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 Parity-check codes are a class of block codes.

– The code is defined by a parity-check matrix 𝐇.

– A codeword 𝐜 must satisfy 𝐇𝐜T = 𝟎.

– Consider the following simple 𝐇:

– Suppose the vector [0 0 1 1 0 0 0] is received for hard decision.

● 𝑐1 = 𝑐2 = 1 (unsatisfied), while 𝑐3 = 0 (satisfied).

● 𝑐1 and 𝑐2 send change (C) while 𝑐3 sends stay (S) to all involved bits.

● Flipping 𝑣2 only from 0 to 1 makes all check equations satisfied.

Parity-Check Codes (Binary Example)
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

𝑐1
𝑐2
𝑐3

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

Systematic form



Low-Density Parity-Check (LDPC) Codes

 Sparse parity-check matrix:

 Corresponding Tanner graph (a bipartite graph):
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Circles represent VNs.

Squares represent CNs.

Columns represent variable nodes (VNs).

VNs are also called bit nodes.

Rows represent check nodes (CNs).
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LDPC Codes: Some Concepts and Notation

 Decoding is performed iteratively through messages from VNs to 

CNs and from CNs to VNs.

 Detrimental configurations are error-prone structures in the 

Tanner graph of the code.

 Useful notation:

➢ 𝛾 is the column weight (VN degree).

➢ 𝜅 is the row weight (CN degree).

➢ 𝐇p is the protograph matrix of a block code.

➢ 𝜎 is the 𝑧 × 𝑧 circulant matrix; 𝜎0 = 𝐈.

 Lifting:
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𝐇

Lifting with 𝑧 = 5

Our codes have fixed 

column weights.



 We start from a single VN and a single CN [Gallager TH].

– Consider the VN 𝑣𝑥 and the set of its CN indices 𝒮𝑥 with 𝑦 ∈ 𝒮𝑥.

– Let the set of indices of the VNs involved in 𝑐𝑦 be 𝒯𝑦.

– Let 𝐯𝑦 (with 𝑣𝑦(𝑗)) be the vector of VNs having indices in 𝒯𝑦 ∖ {𝑥}.

– To get the probability that 𝑐𝑦 is satisfied given 𝑣𝑥 is 1, we 

marginalize over all vectors of VNs:

Similarly, given 𝑣𝑥 is 0:

Simple Illustration of LDPC Decoding
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 Mathematical simplification for the binary case.

– If the sum in (1) and (2) is replaced by max, we get the max-

product or the min-sum decoding.

– Using a famous lemma, (1) can be simplified as follows:

Similarly, (2) can be simplified as follows:

– Let 𝐜𝑥 (with 𝑐𝑥(𝑖)) be the vector of CNs having indices in 𝒮𝑥 ∖ {𝑦}.

– The probability that 𝑣𝑥 is 1 right after the channel is 𝑃𝑥. The 

probability that 𝑣𝑥 is 0 right after the channel is 1 − 𝑃𝑥.

Continue: Belief Propagation (BP)
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 Using the remaining CNs, we get:

– The final BP decoding formula

– Log domain calculations are made if log𝑒( . ) is taken.

 Graphical interpretation of the decoding procedure:

...

…

Graphical Interpretation of BP
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Non-Binary vs Binary LDPC Codes

 Why non-binary?

– Grouping bits into symbols over Galois Field of size 𝑞 (GF(𝑞)) 

decreases the probability of decoding failure.

– Increasing the Galois Field size 𝑞 results in better performance.

– Disadvantage: Decoding complexity increases.

Block length ≈ 1000 bits

Rate ≈ 0.9

Column weight 𝛾 = 4
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Error Floor of LDPC Codes: Binary Absorbing Sets

 Absorbing sets [Dolecek 10] are the reason behind error floor.

– For an (𝑎, 𝑏) absorbing set: 𝑎 is the size of the set, 𝑏 is the number 

of unsatisfied CNs connected to the set, and each VN is connected 

to more satisfied than unsatisfied neighboring CNs.

 Binary absorbing sets are described in terms of topological 

conditions only.

– Here is a (4, 4) binary

absorbing set (𝛾 = 4),

which is elementary.
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Circles represent VNs.

White squares represent satisfied CNs.

Grey squares represent unsatisfied CNs.



Non-Binary (NB) Absorbing Sets

 Differences between non-binary and binary absorbing sets (ASs):

– For NB, the values of VNs matter.

– Topological conditions alone are

not enough; weight conditions

have to be added, e.g., [Amiri 14]:

Example:

(4, 4) NB absorbing set

Elementary weight conditions:

20

Each VN 

value is not 

zero, and 

each edge 

weight is 

not zero.



Absorbing Sets Are Always Problematic!
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 How can the absorbing set cause a decoding error?

– Assume that an all zeros codeword is transmitted.

– Suppose that errors occur only over all the four VNs in the shown 

(4, 4) absorbing set.

– Assume all the VNs are now 1’s.

– Consider hard decision decoding.

– Each degree-2 CN now is satisfied

(1 + 1 = 0), while degree-1 CNs are not.

– Each VN receives 3 stay and only 1

change messages from the connected CNs.

– Despite being in error, all VNs

stick to their wrong values.

– Consequently, the decoder is absorbed!

S

S
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Required: More Gain for Asymmetric Channels

 For symmetric channels (like AWGN) [Amiri 14]:

– The detrimental objects are always elementary ASs.

– Each satisfied CN is of degree 2, and each unsatisfied CN is of 

degree 1.

 Using optimization against elementary objects, only a modest gain 

for Flash channels (inherently asymmetric) can be achieved.

 Absorbing sets also affect the waterfall performance.

– Low-weight codewords are absorbing sets with 𝑏 = 0.

 Better performance gains are required!

 Will the detrimental objects stay the same for asymmetric 

channels?
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 Asymmetry in the channel (e.g., in Flash) can result in:

– ASs with some unsatisfied CNs having degree > 1.

– ASs with some satisfied CNs having degree > 2.

 This is mainly because of the high VN error magnitudes.

– Programming errors have high magnitudes.

 Such dominant objects are non-elementary!

 Example: (6, 4) non-elementary NB AS (𝛾 = 3).

The Answer Is NO!
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Apprropriate 
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Detrimental Objects of Interest

 These objects are general absorbing sets of type two (GASTs) in 

the case of Flash channels [Hareedy 16].

 Recall an (𝑎, 𝑏, 𝑑1, 𝑑2, 𝑑3) GAST over GF(𝑞), 𝑞 ∈ {2, 4, 8, … }:

➢ 𝑎 is the number of VNs in the set (its size).

➢ b is the number of unsatisfied CNs (degree 1 or 2).

➢ 𝑑1 (resp., 𝑑2 and 𝑑3) is the number

of degree-1 (resp., 2 and > 2) CNs.

➢ Each VN is connected to strictly more

satisfied than unsatisfied CNs (for

some VN values in GF(𝑞)∖ {0}).

(6, 0, 0, 9, 0) GAST

 Define also an (𝑎, 𝑑1) unlabeled elementary trapping (resp., 

absorbing) set (UTS) (resp., (UAS)).

– Unlabeled means all edge weights are set to 1’s.

24
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We Focus Now on Spatially-Coupled (SC) Codes

 SC codes have capacity approaching performance [Iyengar 12].

– They also offer additional degrees of freedom in the code design.

 We discuss a combinatorial approach to design high performance 

binary and non-binary SC codes for Flash channels.

– Stage 1: Optimize the partitioning parameters (OO).

– Stage 2: Optimize the circulant powers (CPO).

– OO: Optimal overlap. CPO: Circulant power optimizer.

– The two stages operate on the unlabeled graph (binary matrix).

– Edge weights (NB) are optimized via the weight consistency 

matrix (WCM) framework [Hareedy TI-19].

– Our approach exploits the characteristics of Flash channels.
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Useful Mathematical Notation

 The following notation is useful:

➢ 𝐇 is the binary parity check matrix of the underlying block code 

(we use circulant-based (CB) codes with no zero circulants).

➢ 𝐇SC is the binary parity check matrix of the SC code.

➢ 𝛾 is the column weight (VN degree) of 𝐇 and 𝐇SC.

➢ 𝜅 is the row weight (CN degree) of 𝐇.

➢ Each circulant in 𝐇 is of the form 𝜎𝑓𝑖,𝑗, where 0 ≤ 𝑖 ≤ 𝛾 − 1 and 

0 ≤ 𝑗 ≤ 𝜅 − 1. 𝑓𝑖,𝑗 are the circulant powers.

➢ 𝜎 is the 𝑧 × 𝑧 identity matrix cyclically shifted 1 unit to the left.

➢ 𝐌p is the protograph matrix of a matrix 𝐌 (set 𝑧 = 1).

➢ 𝑚 is the memory of the SC code.

➢ 𝐿 is the coupling length of the SC code.

➢ 𝑞 is the Galois Field (GF) size in the case of NB codes.
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Construction of SC Codes

 The construction steps are:

– Partition 𝐇 into 𝑚+ 1 components: 𝐇0, 𝐇1, …, 𝐇𝑚.

– Component matrices are coupled L times to construct 𝐇SC. 𝐇SC is 

of size 𝛾𝑧(𝐿 + 𝑚) × 𝜅𝑧𝐿.

– If the SC code is NB, non-zero

values in GF(𝑞) are assigned

to the 1’s in 𝐇.

– Overlap parameters (for the

partitioning) and circulant

powers can be adjusted to 

enhance the properties of 𝐇SC.
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A replica

𝐇 = σ𝑦=0
𝑚 𝐇𝑦. (4)



Partitioning Techniques from the Literature

 Cutting vector (CV) partitioning [Mitchell 14]:

– Uses a vector of ascending integers to contiguously partition the 

underlying block matrix.

3 5 8

– In this example: 𝛾 = 3, 𝜅 = 11, 

𝑚 = 1, 𝐿 = 7, and the CV is [3, 5, 8].

 Minimum overlap (MO) partitioning [Esfahanizadeh 17]:

– Minimizes the overlap of each pair of rows of circulants in each 

component matrix (non-contiguous partitioning).

 The OO-CPO approach (also non-contiguous) outperforms both!
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What is the Goal of the Design?

 The goal is to remove as many detrimental GASTs as possible.

– The framework is general for any 𝛾 and any 𝑚.

– From [Hareedy 16], we know the nature of detrimental GASTs for 

graph-based codes over Flash channels.

 First, optimize the unlabeled graph (binary matrix).

– Derive the optimal partitioning (OO) corresponding to the 

minimum number of detrimental objects in the protograph.

– Employ a circulant power optimizer (CPO) to further reduce the 

number of detrimental GASTs in the unlabeled graph.

– Stop after this stage if the SC code is binary.

 Then, optimize the edge weights for NB-SC codes.

– Apply the previously mentioned WCM framework.
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The Common Denominator Substructure
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 We simplify the problem of optimizing the unlabeled graph of the 

SC code (the OO-CPO approach)!

– Search for a common denominator substructure that exists as a 

subgraph in multiple dominant GASTs.

– In codes with column weight 𝛾 simulated over Flash channels, this 

substructure is the (3, 3(𝛾 − 2)) UAS/UTS.

– Minimize the number of such UASs/UTSs in the graph of 𝐇SC.

(4, 2, 2, 5, 0) GAST           (6, 0, 0, 9, 0) GAST                 (3, 3) UAS

𝛾 = 3
Apprropriate 

edge weights 

are assumed, 

with 𝑞 ≥ 2.



From Protograph to Unlabeled Graph

 The (3, 3(𝛾 − 2)) UAS/UTS is a cycle of length 6.

– There is only one protograph configuration that 

can generate it in the unlabeled graph.

– This configuration is also a cycle of length 6.

 Note that the (4, 4(𝛾 − 2)) UAS/UTS is a cycle of length 8 with no 

internal connections.

– The (4, 4(𝛾 − 2)) UAS/UTS is important for magnetic recording.

– There are multiple protograph configurations, which we call 

patterns, that can generate it in the unlabeled graph.

 The OO-CPO approach is applicable to a variety of UASs/UTSs.
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OO: The First Step Towards Our Goal

 We aim at establishing a discrete optimization problem:

– The total number of cycles of length 6 in the protograph, 𝐹, is 

expressed in terms of the overlap (partitioning) parameters.

 The problem needs further simplification!

 Exploiting the repetitive nature of SC codes:

➢ 𝐹 is computed only over submatrices of 𝐇SC
p

.

➢ Overlap parameters are only defined over 𝚷1
1,p

,

which is the protograph matrix of 𝚷1
1 .

 The next step is to find the expression of 𝐹.
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 The set of independent non-zero overlap parameters is 𝒪ind.

 Example: For 𝛾 = 3 and 𝑚 = 1, we have:

𝒪ind = {𝑡 0 , 𝑡 1 , 𝑡 2 , 𝑡 0,1 , 𝑡 0,2 , 𝑡 1,2 , 𝑡 0,1,2 } (at most degree 𝛾).

– Other overlap parameters are functions of the ones in 𝒪ind.

 We illustrate their definitions via an example:

➢ Consider the case of 𝜅 = 11:

➢ 𝑡 0 = 5.

➢ 𝑡 1 = 5.

➢ 𝑡 2 = 6.

➢ 𝑡 0,1 = 1.

➢ 𝑡 0,2 = 1.

➢ 𝑡 1,2 = 3.

➢ 𝑡 0,1,2 = 0.

What Are the Overlap Parameters?

34

Define a degree-𝜇
overlap and a degree-𝜇
overlap parameter.



Useful Definitions and Facts

 Definitions:

➢ 𝒪 is the set of non-zero overlap parameters. Moreover,

➢ 𝐑𝑟 is the reference replica.

➢ The CNs of the cycle are of the form 𝑐𝑥 = 𝑟 − 1 𝛾 + 𝑖𝑥.

➢ 𝑦 + = max{𝑦, 0}.

➢ 𝐹1
𝑘 is the number of cycle instances that start at replica 𝐑1 and span 

𝑘 consecutive replicas. Start and span are w.r.t. VNs.

➢ Each VN of a cycle corresponds to an overlap.

 A cycle of length 6 spans at most 𝜒 = 𝑚 + 1 consecutive replicas.
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 The cycle has three cases depending on how its VNs are 

distributed across replicas.

– Those three cases are shown below.

 We provide more details about the first and third cases.

Building the Discrete Optimization Problem
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Analysis of Protograph Cycle (1 of 2)

 Lemma 1: The cycle has three cases.

– Case 1: The number of instances with

all overlaps in 𝐑𝑟 is:

– Case 3: The number of instances with overlaps in three replicas, 

𝐑𝑟, 𝐑𝑒, and 𝐑𝑠, 𝑟 < 𝑒 < 𝑠, is:
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Overlaps are 𝑐1 − 𝑐2, 

𝑐1 − 𝑐3, and 𝑐2 − 𝑐3.



Analysis of Protograph Cycle (2 of 2)

 Theorem 1: The total number of instances in the binary 

protograph of an SC Code with 𝛾 ≥ 3, 𝜅, 𝑚, 𝐿 ≥ 𝑚 + 1, and 𝒪, is:

where 𝐹1
𝑘, 𝑘 ∈ {1, 2, … ,𝑚 + 1} are given by:

38

(5)

(6)

with                

and                           .

𝜒 = 𝑚 + 1



Then, We Compute the OO Parameters

 The discrete optimization problem is described as follows.

– Mathematical formulation:

(7)

– Optimization constraints:

Linear constraints on the parameters in 𝒪ind capturing interval 

constraints and the balanced partitioning constraint.

– As with the set 𝒪ind, the optimization constraints depend only on 

code parameters, and not on the common substructure of interest 

(which depends on the channel).

– A solution to (7) is 𝐭∗. We call 𝐭∗ an optimal vector. All optimal 

vectors perform the same way.
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Now, We Focus on Circulant Powers

 After 𝐇SC
p

is designed via 𝐭∗, the CPO is applied to further reduce 

the number of (3, 3(𝛾 − 2)) UASs/UTSs in the graph of 𝐇SC.

➢ The (3, 3(𝛾 − 2)) UAS/UTS is a cycle of length 6.

➢ We only need to operate on 𝜒 = 𝑚 + 1 replicas.

➢ 𝚷1
𝜒,p

is the non-zero part of the first 𝜒 replicas in 𝐇SC
p

.

➢ A cycle-6 defined as 𝑐1 − 𝑣1 − 𝑐2 − 𝑣2 − 𝑐3 − 𝑣3 in the graph of 

𝚷1
𝜒,p

results in 𝑧 cycles of length 6 after lifting iff [Fossorier 04]:

where 𝑓𝑖′,𝑗′
′ are the circulant powers associated with the 1’s in 𝚷1

𝜒,p

(obtained from 𝑓𝑖,𝑗, which are the powers of 𝐇p).

40
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The Idea of the CPO

 Cycles in the optimal protograph are not reflected in the unlabeled 

graph after lifting.

– Apply the CPO to break the condition in (8) for as many cycles in 

the optimized graph of 𝚷1
𝜒,p

as possible.
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Example: 𝑧 = 3.

Protograph Unlabeled graph



The Steps of the CPO (1 of 2)

 The steps of the CPO are:

1. Assign initial circulant powers to the 𝛾𝜅 1’s in 𝐇p.

2. Construct 𝚷1
𝜒,p

using 𝐇p and 𝐭∗.

3. Define a variable 𝜓𝑖,𝑗 (resp., 𝜓𝑖′,𝑗′
′ ) for each 1 in 𝐇p (resp., 𝚷1

𝜒,p
).

4. Locate all cycles of lengths 6 and 4 in 𝚷1
𝜒,p

.

5. For each cycle of length 6, check whether (8) is satisfied or not.

6. If (8) is satisfied, mark the cycle as active cycle.

7. The number of active cycles spanning 𝑘 consecutive replicas in 

𝚷1
𝜒,p

is 𝜒 − 𝑘 + 1 𝐹1
𝑘,a

.

8. Compute the number of (3, 3(𝛾 − 2)) UASs/UTSs in 𝐇SC via:

42
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The Steps of the CPO (2 of 2)

9. Count the number of active cycles each 1 in 𝚷1
𝜒,p

is involved in. 

Assign appropriate weights.

10. Store the weighted counts in 𝜓𝑖′,𝑗′
′ and calculate the variables 𝜓𝑖,𝑗.

11. Sort the 𝛾𝜅 1’s in 𝐇p descendingly according to the counts in 

variables 𝜓𝑖,𝑗.

12. Heuristically, pick a subset of 1’s from the top of this list, and 

change the circulant powers associated with them.

13. Using these interim new powers, do Steps 5, 6, 7, and 8.

14. If 𝐹SC is reduced while maintaining no cycles of length 4, update 

𝐹SC and the circulant powers, then go to Step 9.

15. Otherwise, return to Step 12.

16. Iterate until the target 𝐹SC is achieved, or no more reduction in 𝐹SC.
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Example on the OO-CPO Approach

 The objective is to design an SC code with 𝛾 = 3, 𝜅 = 7, 𝑧 = 7, 

𝑚 = 1, and 𝐿 = 30 using the OO-CPO approach.

– OO: Solving (7) yields an optimal vector 𝒕∗ = 3 4 3 0 1 2 0 T, 

which gives 𝐹∗ = 1170 cycles of length 6 in the graph of 𝐇SC
p

.

– CPO: Applying the CPO afterwards results in only 203 (3, 3)
UASs in the graph of 𝐇SC. (P.S. 203 = 1 × 29 × 7.)

 OO-CPO is not only better, but also faster than other techniques!

– We can pick any optimal vector as they all perform the same way.
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Number of (3, 3) UASs in Different SC Codes

 All the codes here have 𝛾 = 3, 𝑚 = 1, and 𝐿 = 30.

 The OO-CPO achieves:

– Between 6.5% and 66.7% reduction compared with the MO.

– Between 74.7% and 93.8% reduction compared with the CV.

 The OO-CPO also defeats that best (reached exhaustively) that 

can be achieved with array-based (AB) circulants!
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Design Technique 
Number of (3, 3) UASs

𝜅 = 𝑧 = 7 𝜅 = 𝑧 = 11 𝜅 = 𝑧 = 13 𝜅 = 𝑧 = 17

Uncoupled with AB 8820 36300 60840 138720

SC CV with AB 3290 14872 25233 59024

SC MO with AB 609 3850 6851 15997

SC best with AB 609 3520

SC OO-CPO with CB 203 2596 5356 14960



Significant Performance Gains on Flash!

 Channel: normal-Laplace mixture (NLM) Flash [Parnell 14].

– IBM MLC channel, with 3 reads and sector size 512 bytes.

– RBER is raw BER. UBER is uncorrectable BER (FER/512/8).

 All the codes have 𝛾 = 3, 𝜅 = 𝑧 = 19, 𝑚 = 1, 𝐿 = 20, and 𝑞 = 4. 

(14440 bits and rate 0.834) 

 The OO-CPO-WCM approach

outperforms existing methods:

– Code 6 outperforms Code 2

by 2.5 orders of magnitude.

– Code 6 achieves 200% RBER

gain compared with Code 2.
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Significant Performance Gains on AWGN!

 There are OO-CPO results for 𝛾 ≥ 3 and 𝑚 ≥ 1 for asymmetric 

Flash [Hareedy 17] and AWGN [Esfahanizadeh 19] channels.

– We managed to achieve zero (3, 3) UASs in SC codes having 𝛾 =
3 and 𝑚 = 2 via the OO-CPO approach.

 All the codes are binary with 𝜅 = 𝑧 = 17 and 𝐿 = 30 (8670 bits).

𝛾 = 3 and 𝑚 = 1 𝛾 = 4 and 𝑚 = 1 𝛾 = 3 and 𝑚 ∈ {1, 2}

Notice the waterfall gains!
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The Goal of MD Construction

 We aim at optimally coupling multiple copies of a high 

performance OD code to suit MD storage devices.

– We relocate the most problematic non-zero (NZ) entries to 

minimize the number of detrimental objects in the MD code.

– Consider a prime number 𝑀 > 2 of copies of an OD code.

– The parity-check matrix of the OD (MD) code is 𝐇OD (𝐇MD).

– The matrices used for relocations are 𝐗1, 𝐗2, …, 𝐗𝑀−1, where:
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Example Illustrating Relocations

 Let 𝑀 = 3. Consider an OD code that is SC (𝐇OD = 𝐇SC) with:

➢ 𝛾 = 2, 𝜅 = 3, 𝑧 = 3, 𝑚 = 1, and 𝐿 = 3.

 One circulant is relocated here from the component matrix 𝐇1.

– This relocation is applied for all 3 replicas.

 How can we optimally perform these relocations?
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No new VNs, 

CNs, or edges 

are added.



 Consider again an (𝑎, 𝑑1) UAS (elementary).

– The number of degree-2 CNs is:

– The number of basic cycles in the cycle basis of the UAS is:

– Examples:

● A (4, 2) UAS, 𝛾 = 3.

Here 𝑛f = 2.

● A (4, 4) UAS, 𝛾 = 4.

Here 𝑛f = 3.

Representing an Object via Its Basic Cycles
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Recall that 𝑎 is the number of 

VNs, and 𝑑1 is the number of 

degree-1 CNs.

Basic cycles are shown in 

dotted lines.



 The NZ entries of a cycle of length 2𝑘 are ℰ𝑖𝑤,𝑗𝑤, 𝑤 ∈ {1, 2, … , 2𝑘}.

– The problem: Finding the condition on a set of relocations of 

some of these entries to be unsuccessful.

– Unsuccessful relocations: 𝑀 cycles of length 2𝑘 remain.

 The MD mapping 𝑅 for all entries is defined as follows:

➢ 𝑅: {ℰ𝑖,𝑗 , ∀𝑖, 𝑗} → {0, 1, … ,𝑀 − 1}.

➢ 𝑅(ℰ𝑖,𝑗) = 0 if ℰ𝑖,𝑗 is kept in 𝐇OD
′ .

➢ 𝑅 ℰ𝑖,𝑗 = ℓ > 0 if ℰ𝑖,𝑗 is relocated to 𝐗ℓ.

 The condition of unsuccessful relocations

[Esfahanizadeh 18]:

What Happens for a Single Cycle?
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(11)

𝑅(ℰ𝑖𝑥,𝑗𝑥) = 𝑅(ℰ𝑖𝑥+1,𝑗𝑥+1) = 1. 

Thus, (11) is satisfied.



Then, We Focus on Objects

 Theorem 2: The necessary and sufficient condition for a set of 

relocations of an (𝑎, 𝑑1) UAS to be unsuccessful is:

– Equation (11) is satisfied for all basic cycles.

– Unsuccessful relocations: 𝑀 (𝑎, 𝑑1) UASs remain.

– More details in [Hareedy TW-19].

 Example with a (4, 2) UAS and 𝑀 = 3:

➢ 𝑅 ℰ𝑐5,𝑣2 = 𝑅(ℰ𝑐5,𝑣4) = 1.

➢ Three (4, 2) UASs remain.
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 Example with a (4, 2) UAS and 𝑀 = 3:

➢ 𝑅 ℰ𝑐3,𝑣4 = 𝑅(ℰ𝑐4,𝑣1) = 1.

➢ One (12, 6) UAS appears.

Three (4, 2) UASs removed!

Successful Relocations Graphically
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Parameters of the Codes to Be Compared

 Our MD code construction algorithm takes relocation decisions 

based on the majority of the votes of UASs.

 The parameters of the codes (𝑀 = 3):

– OD Codes 1 and 3 are SC codes designed via OO-CPO approach.

– OD Codes 1 and 3 have 𝛾 = 3, 𝜅 = 𝑧 = 19, 𝑚 = 1, and GF(4).

– OD Code 2 is a block code having 𝛾 = 4 and GF(2).

– OD Code 1 has length = 5054 bits and rate ≈ 0.82.

– OD Code 3 has length = 15162 bits and rate ≈ 0.83.

– OD Code 2 has length = 4240 bits and rate ≈ 0.90.

– OD Code 1 (resp., 2) is the OD code of MD Code 1 (resp., 2).

– MD Code 1 has length = 15162 bits and rate ≈ 0.82 (for Flash).

– MD Code 2 has length = 12720 bits and rate ≈ 0.90 (for AWGN).
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Comparison Between OD and MD Codes

 Number of UASs of interest in OD and MD codes:

 Performance of OD and MD

codes over NLM Flash channel:

 Informed MD coupling offers:

– Significant reduction in the

number of detrimental objects!

– Significant lifetime gain in

Flash (despite similar code parameters)!
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Code Three OD Code 1 copies MD Code 1

Number of (4, 2) UASs 4218 0

Code Three OD Code 2 copies MD Code 2

Number of (4, 4) UASs 3392 0

1200 P/E cycles

1800 P/E cycles
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Conclusion

 Modern storage systems require effective ECC techniques to reach 

the very low error rates they operate at.

– Graph-based codes offer excellent performance.

 High performance SC codes for Flash memories are designed via 

optimizing partitioning and lifting parameters.

– Optimized SC codes outperform block codes of similar parameters.

 Coupling multiple copies of OD codes to construct MD codes

remarkably improves the performance.

– Significant Flash lifetime gains are achievable via MD codes.

 These frameworks open the door for more reliable usage of ultra 

dense, including multi-dimensional, storage devices.
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Ongoing Research

 Designing high performance time-variant SC codes (replicas are 

different) for Flash memories.

 Combining novel MD constrained and graph-based codes to 

maximize the performance gains in MD storage devices.

 Developing effective error floor prediction techniques for 

asymmetric Flash and for MD channels.

 Constructing codes offering local and global error correction 

capability for warm storage devices, e.g., Intel Optane.
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