

Persistent Memory for Artificial Intelligence

Bill Gervasi
Principal Systems Architect
bilge@Nantero.com

Memory for Al

Artificial Intelligence Variations

Agenda

Challenges for Data Integrity

New System Architectures

NVRAM and Al

emerge...

...from speech recognition to medical analysis to self driving vehicles to purchasing tendencies to fraud detection to...

Al methods are getting smarter, too

Stage 6 - Artificial SuperIntelligence

Stage 5 – Self Aware Systems / Artificial General Intelligence

Stage 2 – Context Awareness and Retention

We're about mid-way into stage 4

Stage 1 - Rule Based Systems

Neural

A wide variety of approaches

Fit

Symbolic

Inference

Analogy

Each generation adds a new complexity in self modification

Al Accelerator Characteristics SIMD (single instruction multiple data) rules

Wide array of simple processing elements

Reduced floating point precision

Tuned for matrix operations

All that trapped data

To avoid losing learned data, systems must periodically checkpoint

Ah, checkpointing!

Great way to burn lots of power and waste performance for no good reason

So now let's take our cute little Al engine and expand it into a mesh

Oh, look, some data I've learned I don't want to lose!

Let's save it!

See how much fun it is to checkpoint?

Wasn't that great?

CPU \$

Memory Control

NVDIMM

Memory

Memory

Memory Memory

Trend is to move non-volatility closer to the CPU

Fortunately, a new wave of technology is coming

Speed of a DRAM

Power-off data persistence

Unlimited write endurance

Memory Class Storage

PERSISTENT DRAM
DROP-IN
REPLACEMENT

JEDEC STANDARD

Addendum No. 1 to JESD79-5, DDR5 Non-Volatile RAM (NVRAM)

JESD79-5-1

JC-42 Item #1856.10

September 2018

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

Details in my talk on Thursday 8:30

In the future

Memory Class Storage

NVRAM

New controllers & memories

Memory Class Storage

=

NVRAM

For now...

Nantero NRAM is a persistent memory using carbon nanotubes to build resistive arrays which can be arranged in a DRAM compatible device or deposited directly on circuits

Embedded

HBM

NRAM may be applied on top of driver circuits, integrated into the logic

CPU

Memory Control

Memory

'Class

Storage

Memory Class Storage

Memory Class Storage

Memory

Class

Storage

Memory Class Storage

NANTERO

Memory Class

Storage

All that trapped data...

...can just stay there!

There is a HUGE gap between Al research work and what's being built

Modeling the brain leads to embedded memory

Al embedded memories are often not von Neumann

Embedded memories suffer from read/write time issues when used as random access (including checkpointing)

Replacing embedded memory with Memory Class Storage removes this barrier

Computing networks are evolving to fabrics

Heterogeneous processing in a unified space

Number of Devices Needed to Achieve Gen-Z Throughput

Flash Memory Summit Gen-Z				DDR4-3200 x8	DDR5-6400 x8	x64	GDDR6-18000 x32	HBM3-4800 x1024
	GT/s	Lanes	GB/s	3.2 GB/s	6.4 GB/s	51.2 GB/s	72 GB/s	615 GB/s
	25	64	320	100x	50 x	7x	5 x	1x
	25	128	640	200x	100x	13x	9x	2x
	32	64	400	125x	63x	8x	6x	1x
	32	128	800	250x	125x	16x	12x	2x
	56	64	700	219x	110x	14x	10x	2x
	56	128	1400	219x	110x	28x	20 x	3x
	112	64	1400	438x	220x	28x	20 x	3x
	112	128	2800	875x	438x	55x	39x	5x

Number of Devices Needed

Problems
with
Standalone
Memories

High System Power

Little Control
Over # GB

Lots of Wasted Data Access

Flash Memory Summit				NRAM-6400				
	Gen-Z			x4096	CNT Logic			
	GT/s	Lanes	GB/s	3200 GB/s*	Substrate			
	25	64	320	1x				
	25	128	640	1x	Single chip fabric storage possible			
	32	64	400	1x	In-Memory computing enabled			
	32	128	800	1x				
	56	64	700	1x	Significantly lower power			
	56	128	1400	1x	Access granularity up to the controller:			
	112	64	1400	1x	Avoid unused data accesses			
	112	128	2800	1x				

Embedded
Persistent Memory
changes how you
view Al architecture

Embedded
Persistent Memory
enables new
implementations

Common Memory Pools Used

Al Uses SIMD Data Flow

Agenda

Data
Checkpointing is
Horrid for Al

New Applications for Fabric Based Systems Coming

NVRAM Solves
Many Al
Memory Issues

Questions?

Bill Gervasi
Principal Systems Architect
bilge@Nantero.com