
Key-Value Store Friendly SSD Interface
Design and Optimization

-- base on RocksDB
teng.yang@starblaze-tech.com

Starblaze Technology

Flash Memory Summit 2018
Santa Clara, CA 1

Background 1: Conventional SSD

HAL

LIB

DPL

FTL/AT

Host CMD

FTL task

GC WL EH

NVMe NFI

§ FTL
• Garbage Collection
• L2P translation
• Wear-Leveling
• Read retention
• Read Disturb
• others

Background 2: RocksDB

§ RocksDB is a typical Key-
Value Store System

§ Key mechanisms
• Immutable is flushed

into files (SSTable)
• SSTable files

compaction for
removing invalid KV

Limit with Conventional SSD on RocksDB

§ High software stack Consumption
• Compaction in RocksDB : space collection in logic level
• Garbage Collection in SSD: space collection in physical level

§ Predictable latencies cannot be guaranteed – 99 percentiles
• garbage collection, wear-leveling and other ftl task

§ Read Bandwidth may be drop
• multiple write streams(multiple user thread)

§ unavoidable Write Amplification
• GC,WL lead to write amplification

Solution 1 – NVMe SSD feature

§ Stream
• expose a block I/O interface to the application

§ Data Set Management
• mark retired data => garbage collection be more efficiency

2018/8/10 Starblaze Technology

Solution 1 – Limit

§ Garbage Collection / Wear Leveling
• QoS
• WA

§ open block count for stream may be not
enough
• user threads count be limited

2018/8/10 Starblaze Technology

Solution 2 - Open Channel SSD

2018/8/10 Starblaze Technology7

Open Channel SSD

§ Host in control
• garbage collection
• wear-leveling
• Translation Map

§ Device maintain
• ssd offload engines and responsibilities
• SSD geometry

Solution 2 - Limit

2018/8/10 Starblaze Technology
8

§ NAND is too complex to handle
• different nand => different Physical Page Addresses (PPA)

§ Application developer must know FTL very well

• garbage collection, wear-leveling and other FTL
knowledge

=> the interface of Open Channel SSD is not
friendly enough

Solution 3 - Object SSD

Commands FW
Object read Super block read
Object write Open block

append program
Object create Block

management/WL
Object Erase Block Erase
Object Seal Block management

Object inquiry SMART

Object SSD

NAND LUN0
NAND LUN1
NAND LUN2

NAND LUN m

Channel 0

Metadata State
Mangagement

NAND Bad Block
Management Error Handling

Channel 1 Channel n

XOR engines

Temperature
Momitor

ECC engines

Async Events
Management

SMART/health
Management

Wear-leveling

Object Mapping Object GC

Object Read/Write/Erase ...

Host System

SSD Controller Internals

NAND LUN0
NAND LUN1
NAND LUN2

NAND LUN m

NAND LUN0
NAND LUN1
NAND LUN2

NAND LUN m

Open Channel SSD Object SSD

Optimize RocksDB with Object SSD

§ Fit SSTable size in RocksDB to object size
§ SSTable is directly flushed into objects(replace of flush to file)
§ reuse RocksDB’s compaction – remove gc inside ssd

• Achieve predictable latency - no 99 percentiles
• Avoid write-amplification introduced by the FTL
• Improve the steady state of the device

§ multiple user threads corresponding to multiple objects
• io isolate with multiple objects

Benefit RocksDB with Object SSD

§ software stack consumption low
• Compaction + GC => Compaction

§ QoS is much better
• GC inside ssd is removed
• WL is very slightly in Object(block) Level

§ Write Amplification is much smaller
§ Better read bandwidth
§ RAM costs down:

• Mapping table(block level) size is less than 1/1000
§ Friendly interface

• object interface can be used like API
• firmware focus on nand

Conclusion

§ Object SSD provide a friendly interface to
host side.

§ Object SSD did help to solve the problem of
RocksDB with Conventional SSD

2018/8/10 Starblaze Technology

§ Come by Starblaze Booth #649 for more info
§ This work is co-worked with Prof. Dejun Jiang

at Institute of Computing Technology,
Chinese Academy of Sciences. For detailed
questions, he can be reached using email:
jiangdejun@ict.ac.cn

mailto:jiangdejun@ict.ac.cn

