
Using Software to Reduce High Tail Latencies
on SSDs

Kapil Karkra
Principal Engineer

Intel Non-volatile Memory Solutions Group (NSG)

Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from
the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products.

No computer system can be absolutely secure.

Performance results are based on testing as of July 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be
absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase.

Intel, the Intel logo, Intel Optane, Xeon, and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the
property of others.

*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation.

2

Tail Latency Problem At Scale

Assume one in a 1000 queries to an SSD will result in a longer (tail) latency
event.

At 1 SSD it is

1 – (999/1000) ^ 1 = 0.1%

At 100 SSDs it is 10%

§ 1- (999/1000) ^ 100 = 10%

At 1000 SSDs it is 63%

§ 1- (999/1000) ^ 1000 = 63%
What causes tail latency problem in SSDs?

3

Read Tail Latency in SSDs

The main sources of high tail latency are:
1. Host reads colliding with host writes (includes

garbage collection)

2. Host reads colliding with other host reads

3. Host reads colliding with asynchronous
background operations (includes Read Disturb
(RD) and Background Data Refresh (BDR))

(1) Separate host reads from host writes to avoid read on write collisions
(2) Minimize garbage collection and other background activities
(3) Avoid high queue depth reads and writes to avoid too many collisions and resource utilization

4

Configuration: Cliffdale P4500 480GB, custom firmware suppressing BDR and RD
Benchmark: FIO, 12h, 4k random reads, 4k random writes (a) qd=64 (b) qd=1

% of IOs rw mix rd only
rd only no

BDR/RD rw mix rd only
rd only no

BDR/RD
99 9.152 3.184 3.12 3.856 0.181 0.181

99.5 10.944 3.44 3.344 4.08 0.183 0.183
99.9 15.296 3.984 3.76 5.344 0.183 0.183

99.95 17.024 4.32 3.888 7.904 0.185 0.185
99.99 21.632 5.536 4.192 13.376 1.736 0.185

480 GB SSD, rd qd=64 wr qd=64 480GB SSD, rd qd=1, wr qd=1

I/O Determinism SSD Capabilities Overview

Key IO determinism capabilities
1. NVM Sets and Endurance Groups
2. Deterministic/Non Deterministic (D/ND) Windows

1. NVM Sets and Endurance Groups
2. D/ND Windows

How can software take advantage of these capabilities to achieve I/O Determinism?

5

Software Approach #1: Solving tail latency using data redundancy, a D/ND
I/O scheduler, and a write-back cache

NVMe Set 1

Write-back cache

D1 D2 P1,2

D3 P3,4 D4

P5,6 D5 D6

NVMe Set 2 NVMe Set 3

ND DD
NVMe Set 1

Write-back cache

D1 D2 P1,2

D3 P3,4 D4

P5,6 D5 D6

NVMe Set 2 NVMe Set 3

ND DD

D7 D8 P1,2 D7 D8 P1,2

Write Read

NVMe
drive 1

NVMe
drive 2

NVMe
drive 1

NVMe
drive 2

KV/LSM workload, 2TB Volume
(3 1TB Sets on P4600)

Desired read
latency (ms)

Passthrough set
(rw mix)

RAID5 style
redundancy
(rd only w/IO
scheduling)

RAID5 style
redundancy
(rd only w/D/ND IO
scheduling)

p99 3 4.490 2.442 0.181
p99.99 6.5 9.896 4.490 0.338
P99.9999 11 13.042 5.997 0.868

Rd IOPS (kIOPS) 8.75 27 27 27
Wr BW (MB/s) 72 250 250 250

The approach achieves (a) read write separation (b) reduces read on read collisions (c) eliminates the read-on-background-write collisions

What if you don’t like the capacity tradeoff or cost of an additional write buffer and don’t have the I/O determinism capabilities on your SSD?
6

Configuration: Cliffdale P4600 1TB, 3 set RAID5 vs. P4600 passthrough, custom firmware
supporting D/ND
Benchmark: FIO, 12h, 4k random reads, qd=10, two threads of 25% random write bursts; thread1:
512k writes with a thinktime of 2.56s, thread2: 512k writes with thinktime of 1.28s

*

*Other names and brands may be claimed as the property of others.

SSD Resource Utilization and Tail Latency

Write BW

Read IOPs

Keep the NAND dies idle

SSD Transfer Buffer

Keep writes small for the transfer
buffers idle

Write1read1 Write2

read2

read3

read4

read5X SSD can’t accept new read5

The more the resources are utilized, the higher the latency spike
7

Software Approach #2: I/O Shaping

1. Throttling/Trickling writes: Die Idle

Intel P4510, 1TB Sets, throttling
Desired Sets Sets Sets Sets

p99 3 5.088 4.896 3.376 1.4
p99.9 5 6.88 6.688 5.024 3.056
p99.99 7 14.144 12.608 7.584 4.576
Wr BW (MB/s) 67 57 41 20

2. Chopping writes: Transfer Buffer efficiency

Intel P4510, Bursts, 2TB Sets, Chopping
Sets Sets Sets Sets

T=1.28, B=160,
BS=512k

T=1.28, B=160,
BS=128k

T=1.28, B=640,
BS=32k

T=1.28, B=5120,
BS=4k

p70 0.111 0.112 0.111 0.111
p99 2.544 1.544 1.464 1.48
p99.9 6.752 4.384 4.192 3.984
p99.99 17.536 11.072 10.56 5.28

Wr BW (MB/s) 15 15.43 15.38 14.42

This approach trades off write bandwidth for read determinism

8

Configuration: Cliffdale P4510 1TB Sets
Benchmark: FIO, 12h, 4k random reads, qd=10, two threads of 25% random write bursts; thread1:
512k writes with a thinktime of 2.56s, thread2: 512k writes with thinktime of 1.28s

Configuration: Cliffdale P4510 2TB Sets
Benchmark: FIO, 12h, 4k random reads, qd=10, two threads of 25% random write bursts; thread1:
writes with a thinktime of 2.56s, thread2: writes with thinktime of 1.28s, varying block sizes from 512k
down to 4k

Workload Characteristics and Tail Latency

Workload Different Data Lifetime Streams: 3 Sequential
Streams and 1 Random Stream; Large velocity
delta among sequential streams, random
partition only 5%, uniform random

Data Lifetime
classifier

LBA Ranges different for three sequential workers
with 1x, 7x, and 17x velocity difference (QD=4)
while a single random stream of 1x velocity
(QD=16)

WAF
improvement

60% (2.9à1.2)

Performance
Improvement

3.5x

Read QoS
(P9999)

34%

Device P4500

1. Workloads that mix different lifetime data (e.g.,
mixing frequently updated data with static data) increase
garbage collection and thus tail latency

2. Write bursts in a workload also cause high tail latency

Intel P4510 w/ 1TB Sets
Desired bursts no bursts

p70 0.8 0.173 0.197
p99 3 5.088 1.512
p99.9 5 6.88 2.544
p99.99 7 14.144 3.344
Rd IOPS (kIOPS) 7 7 7
Wr BW (MB/s) 77 67 82

Can we shape workload to (a) avoid mixing different lifetime data streams (b) eliminate bursts from the workload? 9

NAND drive: P4500 Prototype 480GB, firmware modified to support 4 streams
Benchmark: FIO, 3 sequential write streams (different velocity), 1 random write stream, 12h

Configuration: Cliffdale P4510 1TB Sets
Benchmark: FIO, 12h, 4k random reads, qd=10, two threads of 25% random write bursts; thread1: 512k
writes with a thinktime of 2.56s, thread2: 512k writes with thinktime of 1.28s; no burst run is without
the thinktime

Software Approach #3: Intel® Optane™ SSD Write Buffer

Solution Details:

• All writes from application go to Intel® Optane™ SSD buffer

• Data in buffer partitioned, based on lifetime classifier

• Flushing of data performed in buckets of size equal to NAND drive erase unit size
‒ Only one bucket at a time

‒ Erase unit filled with data with same stream (e.g. same velocity)

• Flushing throttle – TB algorithm to prevent write bursts on NAND drive

The approach achieves (a) write amp reduction through lifetime classification (b) eliminates bursts (c) Intel® Optane™ Technology can absorb multiple

reads and writes to improve tail latency 10

Conclusion
§ Software techniques (redundancy, IO shaping, and caching/buffering) built on top of hardware

capabilities (Intel® Optane™ SSD and IO Determinism capable SSDs) are a powerful tool to
cut the tail

11

