

RDMA Memory Placement Extensions for PMEM

Idan Burstein

Flash Memory Summit 2018 Santa Clara, CA

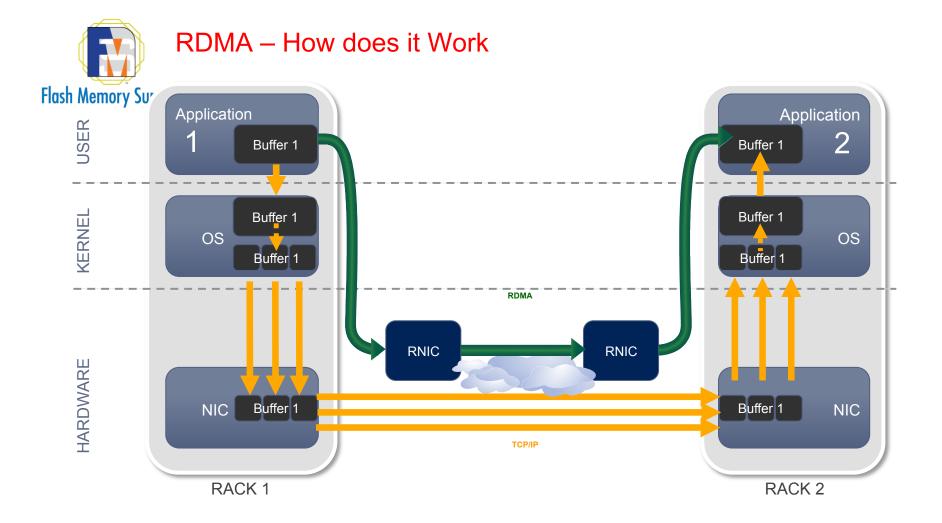
1

- Introduction to memory placement guarantees of IB ullet
- Memory placement extensions ullet
- Use cases
- Next steps •

Flash Memory Summit 2018 Persistent Memory Track

FMS Persistent Memory Track Presented by: SNIA. JEDEC.

Disruptive Technology - Persistent Memory in Storage


- Storage with Memory Performance
 - ~1Kx Write Latency Improvements over Flash
 - IOPs limited by raw BW
 - Byte Addressability
 - e.g. 3dxpoint, NVDIMM, NVRAM, RERAM
- Emerging Eco-system for Direct Attach Storage
 - SNIA NVM Programming Model TWIG
 - Memory mapping of the storage media
 - E.g PMEM.IO, DAX changes in file system stack
- Next step is Remote Access
 - Virtualization
 - Sharing
 - High Availability

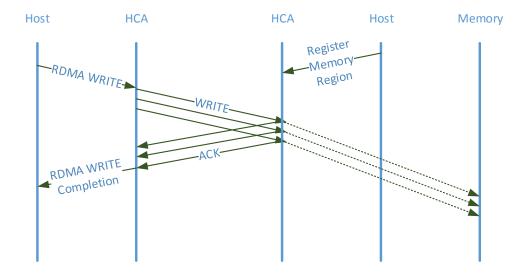
Flash Memory Summit 2018 Persistent Memory Track FMS Persistent Memory Track Presented by: SNIA. JEDEC.

- Transport built on simple primitives deployed for 15 years in the industry •
 - Queue Pair (QP) RDMA communication end point •
 - **Connect** for establishing connection mutually •
 - RDMA Registration of memory region (REG MR) for enabling virtual network access • to memory
 - SEND and RCV for reliable two-sided messaging ٠
 - RDMA **READ** and RDMA **WRITE** for reliable one-sided memory to memory • transmission
- Reliability •
 - Delivery •
 - Once ٠
 - In order ٠

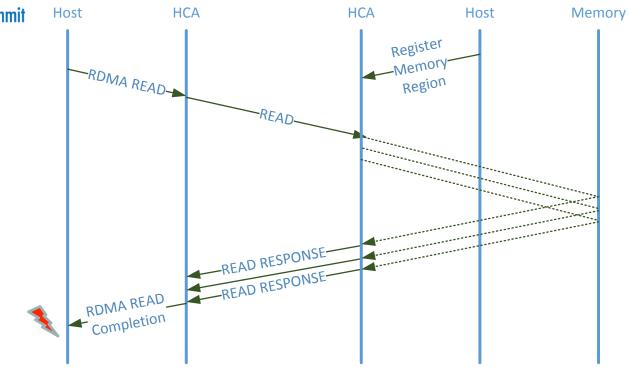
Flash Memory Summit 2018 Persistent Memory Track

FMS Persistent Memory Track Presented by: SNIA. JEDEC.

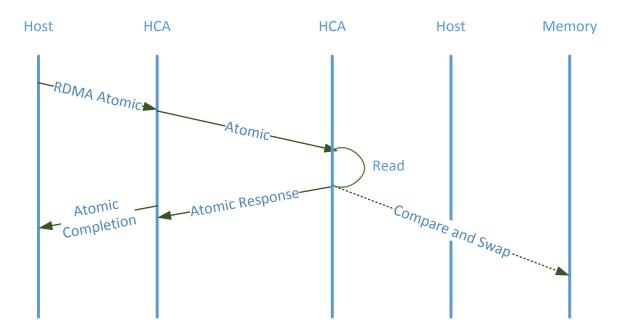
5


RDMA Memory Placement Guarantees

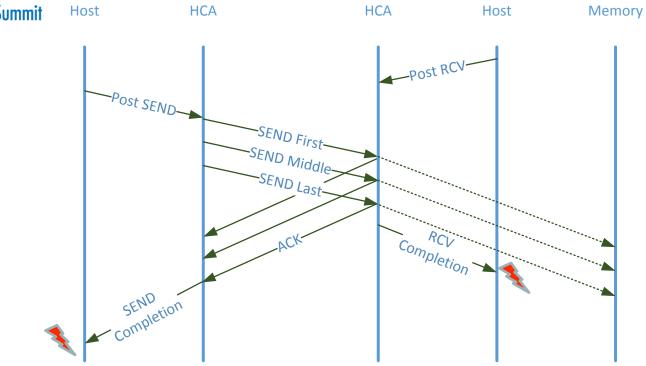
Flash Memory Summit 2018 Persistent Memory Track


RDMA WRITE Semantics

- RDMA Acknowledge (and Completion)
 - Guarantee that Data has been successfully received and accepted for execution by the remote HCA
 - Doesn't guarantee data has reached remote host memory
 - Doesn't guarantee the data can be visible/durable for other consumers accesses (other connections, host processor)
- Further Guarantees Implemented by ULP



RDMA READ



RDMA Atomics

Send / Receive

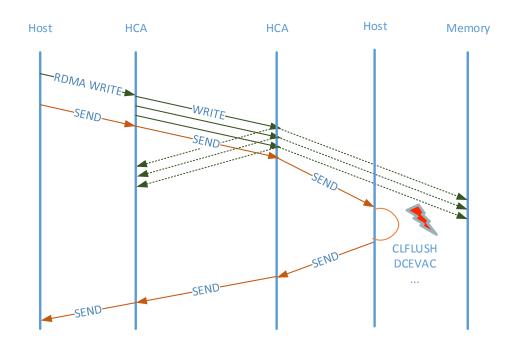


	Table 79 Work Request Operation Ordering									
	Second Operation									
		Send	Bind Window	RDMA Write	RDMA Read	Atomic Op	Fast Register Physical MR	Local Invalidate		
First Operation	Send	#	#	#	#	#	NR	L		
	Bind Window	#	#	#	#	#	NR	L		
	RDMA Write	#	#	#	#	#	NR	L		
	RDMA Read	F	F	F	#	F	NR	L		
	Atomic Op	F	F	F	#	F	NR	L		
	Fast Register Physical MR	#	#	#	#	#	#	L		
	Local Invalidate	#	#	#	#	#	#	#		

Table 80 Ordering Rules Key						
Symbol	Description					
#	Order is always maintained.					
NR	Order is not required to be maintained between the Fast Register and the previous operations.					
F	Order maintained only if second operation has Fence Indicator set					
L	Order maintained only if Invalidate operation has Local Invalidate Fence Indicator set					

Further Guarantees Implemented by ULP - Example

RDMA Memory Placement Extensions

Flash Memory Summit 2018 Persistent Memory Track

RDMA Flush

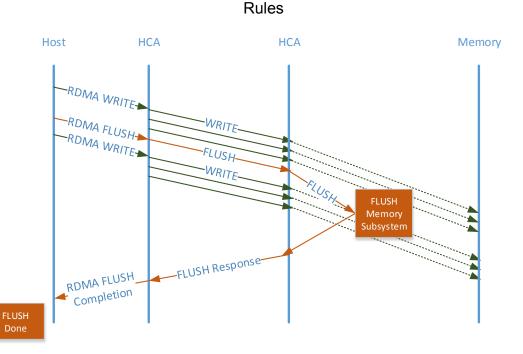
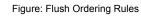
- Non-Posted
 - Un-deterministic execution time (PCIe, media type, media interface)
- Preserve RDMA Operation Model
 - Follow Existing IB Ordering Rules of Non-Posted operations
 - Posted operations (i.e. WRITE) can bypass non-posted operations (i.e. READ)
 - Non-posted (i.e. READ) operations can't bypass posted operations (i.e. WRITE)
 - Transport operations remain unchanged

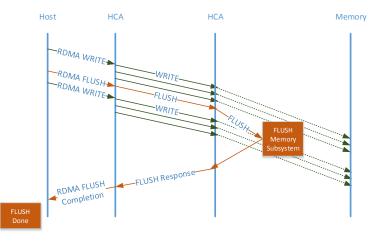
Eigure: Flush Ordering Rules

RDMA FLUSH Operation System Implication

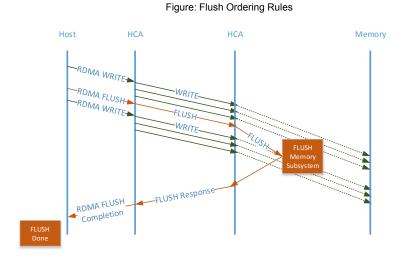
System level implication may be:

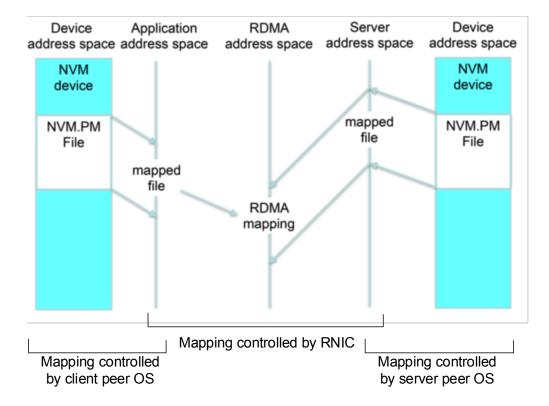
- Caching efficiency
- Persistent memory bandwidth / durability
- Performance implications for the flush operation
- The new reliability semantics design should consider these implications during the design of the protocol
- These implications are the base for our requirement

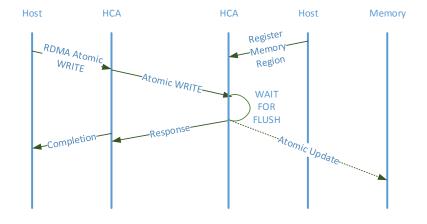

Figure: Flush Ordering

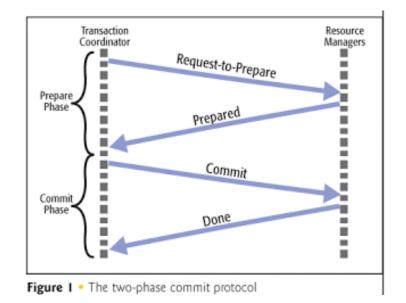
Therefore..


- **Performance Requirements**
 - Amortize Cost of the FLUSH Operation
 - **FLUSH Selectiveness**
 - **FLUSH** Pipelining •
- Types
 - **Global Visibility** •
 - Persistency



- Memory Region Range
 - FLUSH preceding data access within the RETH range {RKEY, VA, Length} within the QP
- Memory Region
 - FLUSH preceding data access within the RETH.RKEY within the QP
- All
 - FLUSH all preceding data accesses within the QP


Use Case: RDMA to PMEM for High Availability


Atomic WRITE

- New Transport Operation: Atomic WRITE
 - Follows Ordering Rules of Non Posted
 Operation
 - i.e. can't bypass a previously received FLUSH/READ
 - Leverages Native Non Posted
 Operations Semantics
 - Natural fit with existing transport protocol
 - Ordering
 - Flow Control
 - Error Handling (e.g. Repeated)

Use Case: Two Phase Commit

Flash Memory Summit

Without paying the price of a round trip!

- Complete the spec write for RDMA Memory Placement Extensions
- Standardize a mechanism for flushing host bus (PCIe, CCIX, ...)