

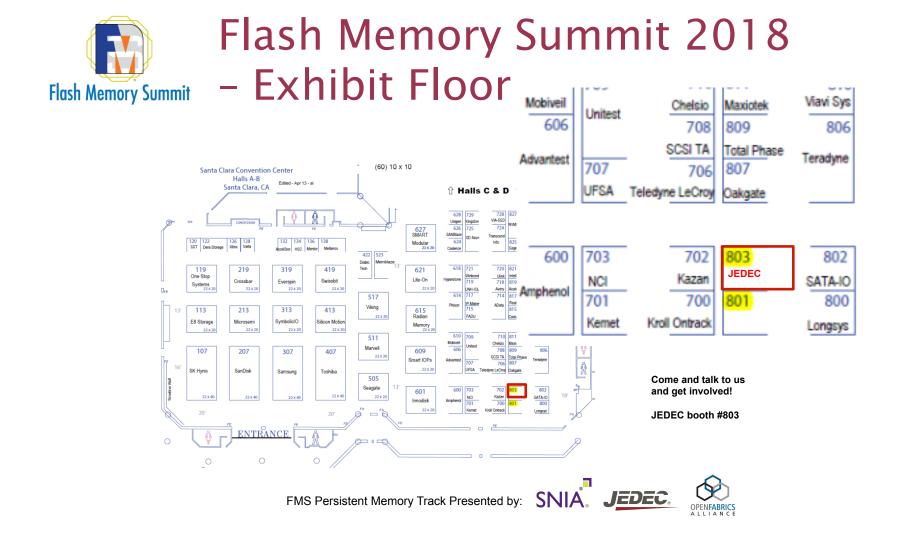
PMEM-201-1 Software and Applications

Chairs: Arthur Sainio, SMART Modular Jeff Chang, AgigA Tech Co-Chairs, SNIA Persistent Memory and NVDIMM SIG

Speakers – Part 1

- Doug Voigt, HPE
 - The SNIA NVM Programing Model
- David Tseng, Bigtera
 - NVDIMM: The Savior of SSD Endurance in CEPH
- Sreekanth Garigala, Western Digital
 - Performance Benefits of NVDIMMs in Enterprise Data Storage Platforms
- Myoungsoo Jung, Yonsei University
 - Design of PRAM-based Persistent NVDIMM Controllers to Prepare the Data Age

- Brian Bulkowski, Aerospike
- Scott Miller, Dreamworks Animation
- Jia Shi, Oracle
- Rakesh Radhakrishnan, VMware


Upcoming Events Featuring Persistent Memory Talks

SDC discount registration cards in FMS bags & at SNIA booth 820

Complimentary registration now open at snia.org/pmsummit

NVM Programming Model Overview and Status

System behaviors for broad application support

By Doug Voigt

NVM Programming Model TWG - Mission

- Accelerate the availability of software that enables Persistent Memory (PM) hardware.
 - Hardware includes SSD's and PM
 - Software spans applications and OS's

Create the NVM Programming Model

- Describes application-visible behaviors
- Allows API's to align with OS's
- Describes opportunities in networks and processors

Flash Memory Summit 2018 Santa Clara, CA

SNIA NVM Programming Model

- Version 1.2 approved by SNIA in June 2017
- Expose new block and file features to applications
 - Atomicity capability and granularity
 - Thin provisioning management
- Use of memory mapped files for persistent memory
 - Existing abstraction that can act as a bridge
 - Limits the scope of application re-invention
 - Open source implementations available
- Programming Model, not API
 - Described in terms of attributes, actions and use cases
 - Implementations map actions and attributes to API's

Flash Memory Summit 2018 Santa Clara, CA

The NVM Programming Model has 4 modes

	Block Mode Innovation	Emerging PM Technologies
	IO	Persistent Memory
User View	NVM.FILE	NVM.PM.FILE
Kernel Protected	NVM.BLOCK	NVM.PM.VOLUME
Media Type	Disk Drive	Persistent Memory
NVDIMM	Disk-Like	Memory-Like

The current version (1.2) of the specification is available at

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

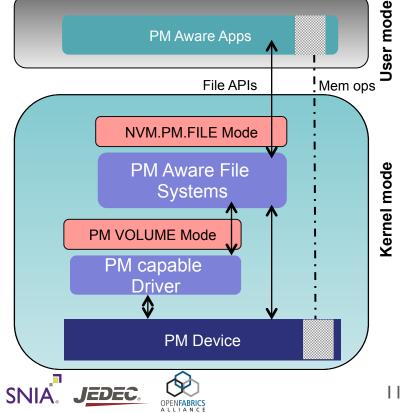
Flash Memory Summit 2018 Santa Clara, CA

FMS Persistent Memory Track Presented by: SNIA. JEDEC.

Programming Model Modes

- Block and File modes use IO
 - Data is read or written using RAM buffers
 - Software controls how to wait (context switch or poll)
 - Status is explicitly checked by software
- Volume and PM modes enable Load/Store/Move
 - Data is loaded into or stored from processor registers
 - Processor waits for data during instruction
 - No status returned errors generate exceptions

Flash Memory Summit 2018 Santa Clara, CA



Persistent Memory (PM) Modes

NVM.PM.VOLUME Mode

- Software abstraction for persistent memory hardware
- Address ranges
- Thin provisioning management
- NVM.PM.FILE Mode
 - Application behavior for accessing PM
 - Mapping PM files to application address space
 - Syncing PM files

Flash Memory Summit 2018 Santa Clara, CA

Past Accomplishments

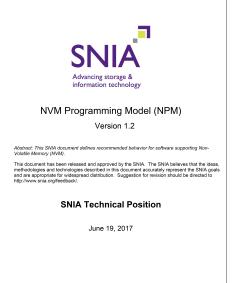
- NVM Programming Model 1 published December 2013
- Best business application award, FMS 2014
- NVM Programming Model 1.1 published March 2015
- Remote Access for High Availability white paper published 2016
- PM Atomics Transactions white paper published 2016
- NVM Programming Model 1.2 published June 2017
 - Major new installment on error handling
 - Optimized Flush Allowed
 - Deep Flush

Flash Memory Summit 2018 Santa Clara, CA

Ongoing NVMPM Work Items

- NVM Programming Model Specification 1.3
 - Update specification to reflect learning from implementations
 - Incorporate learning from remote access white paper
 - Asynchronous Flush
 - Remote persistence ordering, error handling
 - Remote Access Collaboration with OFA OFIWG
 - PM Remote Access for HA V1.1
 - Expand remote access use case enumeration
 - PM Security threat model
 - Identify potential security gaps created by PM
 - PM Management
 - Integration into Redfish and Swordfish

Flash Memory Summit 2018 Santa Clara, CA



Flash Memory Summit Role of the NVM Programming Model

Rally the industry around a view of Persistent Memory that is:

- Application centric
- Vendor neutral
- Achievable today
- Beyond storage
 - Applications
 - Memory
 - Networking
 - Processors

Flash Memory Summit 2018 Santa Clara, CA

