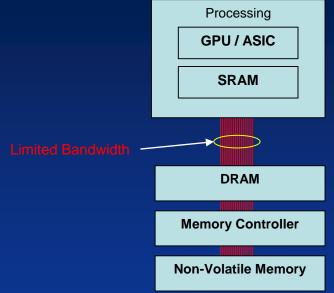


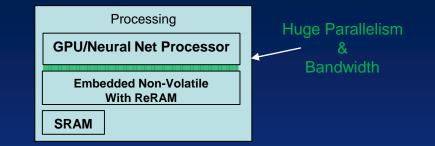
Forging the Way in AI Architecture with ReRAM Based Computational Memory

Hagop Nazarian VP of Engineering, Cofounder Crossbar Technology Inc.

AI Architectural Evolution



Memory separated from the computational unit John Von Neumann Architecture



Embedded ReRAM with NN Processors

- ✓ Computational ReRAM array
- ✓ Monolithic solution at advanced CMOS nodes
- Interface bus size defined by AI System architects not by memory or GPU manufacturers
- ✓ Large parallelism directly coupled to the processor
 - ✓ Yields huge bandwidth increase
 - ✓ Drastically reduces overall system energy consumption

ReRAM Bridging The Generational Gap

CMOS vs. Flash vs. ReRAM Scaling Trend



- eFlash is ~4 generations behind advanced Logic !!
- Flash technology does not scale with CMOS Logic process
- ReRAM is the non-Volatile memory choice for the advanced nodes in major foundries
- ReRAM Development already in Progress at least in 3 major foundries

What does an AI system Do?

AI systems can think and learn

- Training
- Inferring
- Classifying information
- Evaluating
- Use Low Energy and Low Latency
- Do all above in real-time at the edge

How does an AI system operate?

- To Train
 - Learns from the massive data
 - Establish relationships and trends
 - Interpolation and extrapolation models to be used for optimum solutions
 - <u>Store them</u>
- To Infer
 - Deduce estimated solutions or trends from observations and the trained model
 - Adapts to the environment and optimize the system
 - Store the new scheme
- To Classify information
 - Compares information, establishes relations, and stores them
- To Evaluate
 - Calculates, compares and finds the best given match conditions

- Add/Subtract/Multiply/Divide
- Comparison => Classification
- Randomization => to speed up searches
- Best fit, Best match
- Matrix operations Convolution Sparse
- Energy efficiency of the AI system

Example: Convolution

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

This is called a **convolution** operation:

$$G = H * F$$

- F is the image Matrix
- H is the Kernel Matrix
- G is the output

Mean Filter (Blurring)

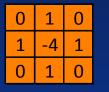
-1	-1	-1	
-1	9	-1	
-1	-1	-1	

*

Sharpening Filter

F

Edge Detection

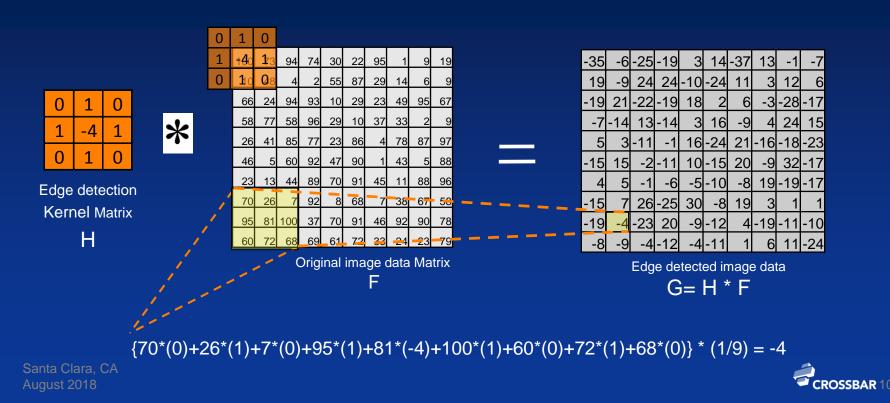


*

Edge Detection

Source: Matlabtricks.com

Edge Detection Calculation



94 93 58 96 60 92 44 89 81 100 37 70 91 46 92 68 69 61 72

Sequential Computation 1700 operations 900 multiplications and 800 additions

Santa Clara, CA August 2018

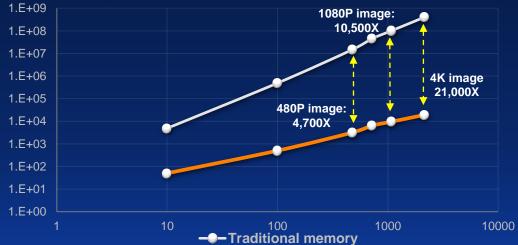
Parallelisms in Computation

0	1	0	0	1	0	0	1	0	0	1	0
1	-4	1	1	-4	1	1	-4	1	1	-4	1
0	1	0	0	1	0	0	1	0	0	1	0
	100	73	94	74	30	22	95	1	9	19	
	10	48	4	2	55	87	29	14	6	9	
	66	24	94	93	10	29	23	49	95	67	
	58	77	58	96	29	10	37	33	2	9	
	26	41	85	77	23	86	4	78	87	97	
	46	5	60	92	47	90	1	43	5	88	
	23	13	44	89	70	91	45	11	88	96	
	70	26	7	92	8	68	7	38	67	58	
	95	81	100	37	70	91	46	92	90	78	
	60	72	68	69	61	72	33	24	23	79	

Parallel Computation 30 operations

Operations vs Image resolution

Convolution MAC Operations vs Image Resolution with a 5x5 Kernel



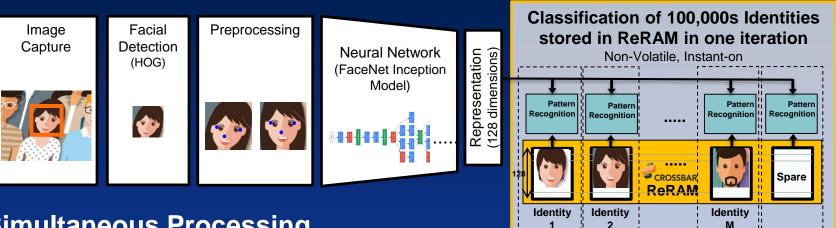
 ReRAM computational array architectures provides magnitudes orders of performance & energy improvement Santa Clara, CA August 2018

ReRAM Based IPs & Arrays

ReRAM Computational Memory Arrays & IPs	Usage		
Highly Parallel Memory	Classification		
Computational Arrays	Matrix Operations Multiply Accumulate Sparse Matrix		
Comparison/Evaluation	Matching, Best Fit, statistics		
Configurable logic	Configuration bits, FPGA,		
Power management	Memory Shadowing		
Embedded memory, standalone memory, & OTP	Embedded at Code/Data Memory at advanced nodes		

Highly Parallel Memory

Face Recognition with ReRAM

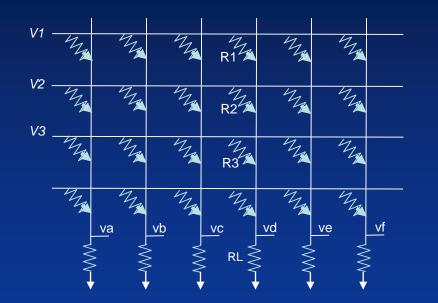


Simultaneous Processing with Deterministic Performance

- Parallel comparison against all identities
- If no match, new identity created (learning)
- Classification performed in one cycle independent of number of identities

Computational ReRAM Array Convolution - MAC

ReRAM Computational Array Properties - MAC

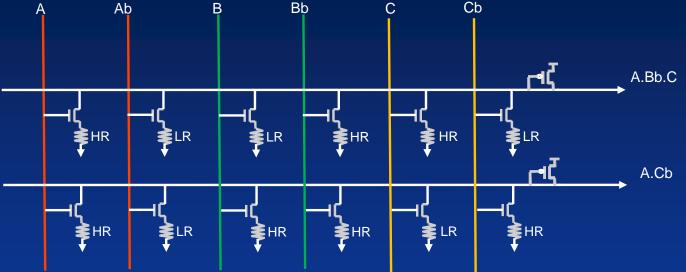


- High Bandwidth Multiply Accumulate operations (MAC) are performed with crossbar ReRAM array architectures
- Many MAC operations are simultaneously calculated
- Multiple Word lines are activated simultaneously
- Linear equations are solved with low latency, and low energy consumption

For example:

$$Vd = \left\{ \frac{(V1 \cdot Gm1) + (V2.Gm2) + (V3.Gm3)}{Gl.(1 + Gm1 + Gm2 + Gm3)} \right\}$$

Computational ReRAM Array Comparison – Evaluation – Best Fit

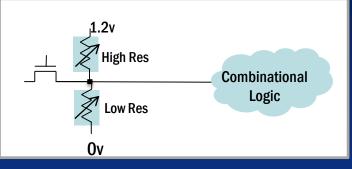


- Large vector comparison/detection (i.e. > 512bits) is performed in few nanoseconds
- Vector evaluation performed within the memory array

Providing major system energy savings and reduced latency
Santa Clara, CA
August 2018

Configurable Logic – Power management

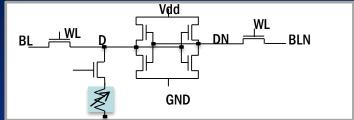
Configuration Bit



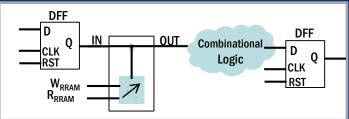
- Instant On
- Eliminates external non-volatile memory
- Security

Santa Clara, CA August 2018

NVRAM



State Retainer



- Stores data at power down
- Recalls at power up
- Power saving

ReRAM based Computational Arrays and IPs

- ReRAM Technology provides AI architects:
 - Breakthrough computational ReRAM memory arrays with
 - High computation bandwidth and high parallelism
 - Low energy
 - low latency
 - Freedom to architect
 - Monolithic integration with advanced CMOS & FPGAs

Everyone says AI is the key, but we know the key to AI is ReRAM Don't be left behind

Rethink Artificial intelligence with ReRAM

