

Managing Flash In OpenSDS For Cloud Native Frameworks

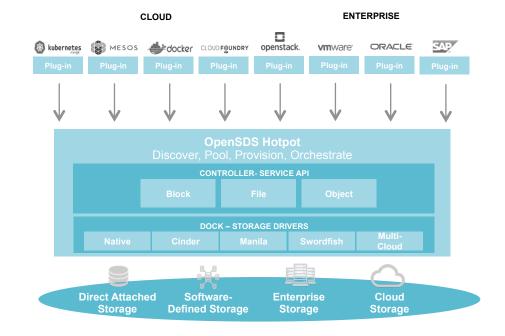
STEVEN TAN, OpenSDS TSC Chair, VP & CTO Cloud Storage Solution - Huawei @stevenphtan **ANJANEYA 'REDDY' CHAGAM**, OpenSDS TSC, Chief SDS Architect – Intel

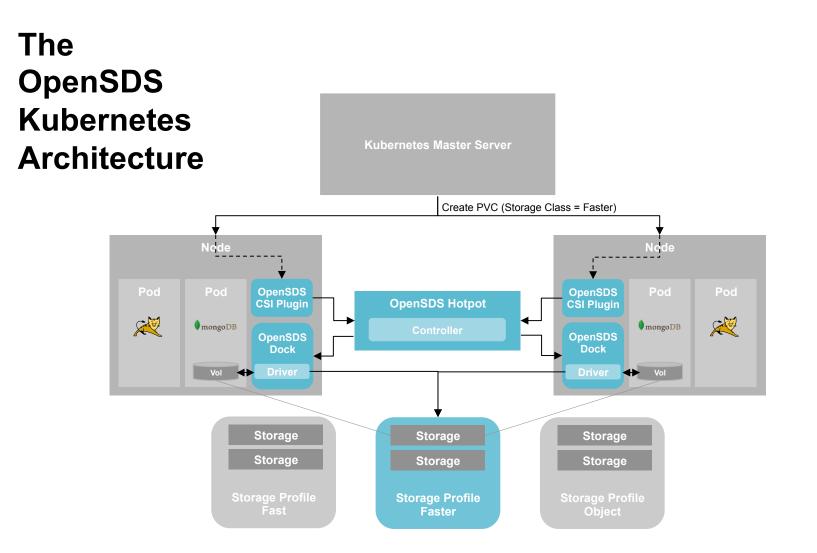
Overview

Open SDS Open SDS Platform	Control/ Management Plane	Standard REST API, Single Pane Management, Policy- Based, Storage and Data Services, Orchestration and Automation
	Data Plane	Data Reliability, High Availability, Data Protection, Data Mobility, Data Reduction, I/O Performance
	Storage/Service Layer	DAS (HDD/Flash), SAN, NAS, AFA, Commodity, Private Cloud, Public Cloud

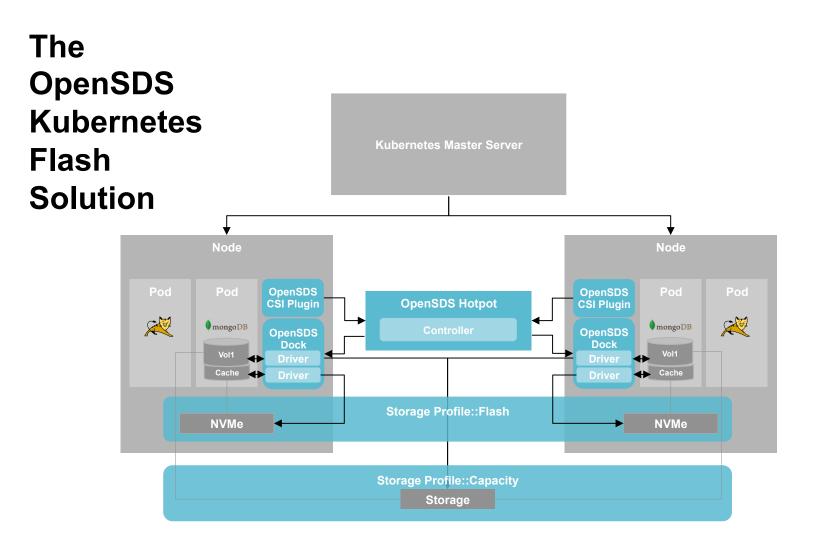
Decoupled control plane from data plane and storage/service layer

The Projects


SUSHI The Northbound Plug-ins Project

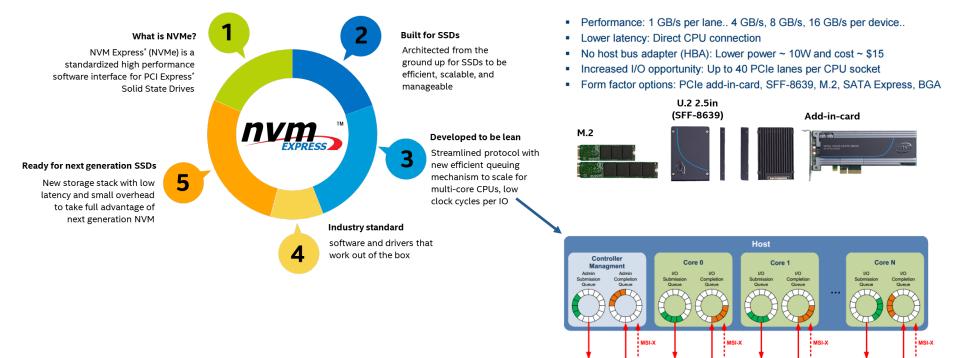

Common plug-ins to enable OpenSDS storage services for cloud and application frameworks

HOTPOT The Storage Controller Project


 \triangleright

Single control for block, file, and object services across storage on premise and in clouds

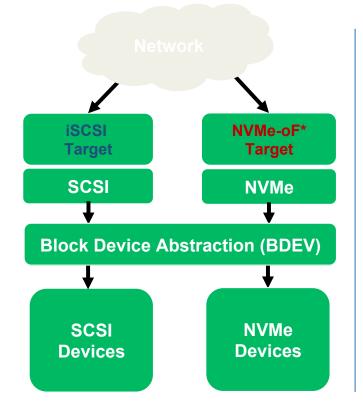
bpen**SDS**


bpen**SDS**

5

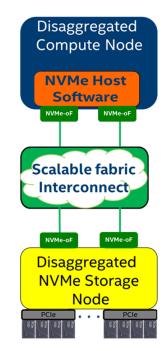
NVM Express (NVMe)

Standardized interface for non-volatile memory, http://nvmexpress.org



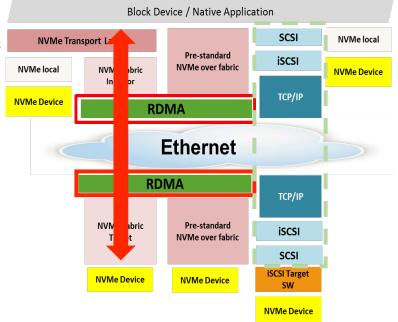
Source: Intel. Other names and brands are property of their respective owners. Technology claims are based on comparisons of latency, density and write cycling metrics amongst memory technologies recorded on published specifications of in-market memory products against internal Intel specifications.

NVMe Controller


Remote Access To Storage – iSCSI and NVMe-oF

- NVMe-over-Fabrics

 NVMe commands over storage networking fabric
- NVMe-oF supports various fabric transports
 - RDMA (RoCE, iWARP)
 - InfiniBand[™]
 - Fibre Channel
 - Intel® Omni-Path Architecture
 - Future Fabrics



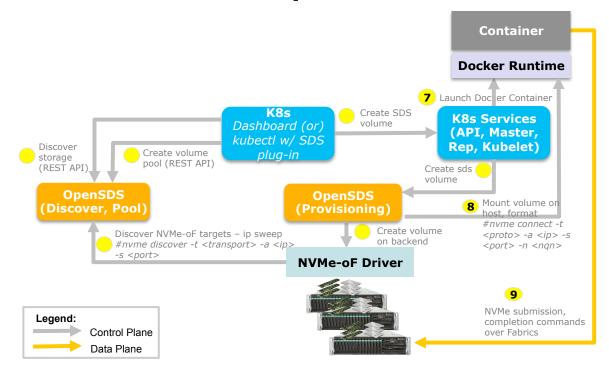
NVMe-oF: Local NVMe Performance

- The idea is to extend the efficiency of the local NVMe interface over a network fabric
 - Ethernet or IB
 - NVMe commands and data structures are transferred end to end
- Relies on RDMA for performance
 Bypassing TCP/IP
- For more Information on NVMe over Fabrics (NVMe-oF)

http://www.nvmexpress.org/wp-content/ uploads/NVMe_Over_Fabrics.pdf

NVMe-oF: Kernel Initiator

- Uses nvme-cli package implement the kernel initiator side
- Connect to remote target
- nvme connect –t rdma –n <conn_nqn> –a <target_ip> –s <target_port>
- nvme list to get all the nvme devices


NVMe-oF: Kernel Target

- Uses nvmetcli package implement the kernel target side
- nvme save <file_name>- to create new subsystem
- nvme restore to load existing subsystems

"subsystems": [
{ "allowed_hosts": [], "attr": { "allow any host": "1"
}, "namespaces": [
{ "device": { "nguid": "ef90689c-6c46-d44c-89c1-4067801309a8", "path": "/dev/nvme0n1"
}, "enable": 1, "nsid": 1
}], "nqn": "testnqn"
3

NVMe-oF in OpenSDS

Work In Progress

- Linux Kernel Driver
- nvme commands for connect
- Drive assignment
- Specs include target info

2019 Plans

- Pooling
- Rack aware scheduling
- User mode target (SPDK)
- NVMe over TCP/IP

OpenSDS Roadmap v0.17

2017H2 ZEALAND

• Kubernetes FlexVolume

- Vol CRUD
- Standalone
 Cinder Integration
- CSI Support
- Ceph, LVM

2018H1 ARUBA

- OpenStack
- Replication
 Array-Based,
 Host-Based
- Dashboard
- Storage Profiles
- Enumeration
- Block Storage
 - Cinder Drivers
 - CephLVM
 - LVM
 - Huawei: Dorado

2018H2 BALI

- S3 Object
- Multi-Cloud Data Control
- Multi-OpenStack
- Monitoring
- Storage Groups
 Snapshots, Replication
- Southbound Swordfish*
- NVMeoF Preview

2019H1 CAPRI*

- File Share
- Analytics
- Lifecycle
- Migration
- Data Protection
- NVMeoF

2019H2++

- Optimization
- Tiering
- Security
- Sharing
- Networking
- SCM

THANK	FIND OUT	OpenSDS @ SNIA SDC
YOU Den SDS	MORE	Santa Clara, Sep 24-27
 https://www.opensds.io https://github.com/opensds info@opensds.io @opensds_io 	BE A MEMBER	Accepting New Members Vendors And End Users Welcome