



а 🔨 Міскоснір company

## **Fully Integrated LLR Calculation Flow**

#### Lorenzo Zuolo, Alessia Marelli, and Rino Micheloni

Flash Signal Processing Lab (FSPL)

Microsemi Corporation Via Torri Bianche, 1 20871 Vimercate (Italy) Iorenzo.zuolo@microsemi.com



#### Data creation model is evolving fast...

#### Users' data for users



# 

Machines' data for machines



#### Unimaginable size... But, what if bytes were stars?





#### **160 Zetta Bytes by 2025\***

Flash Memory Summit 2018 Santa Clara, CA



#### **300 Zetta Stars in the Universe\*\***

4



## The Killer Application: "All and Now"

The usage model for stored data is also evolving quickly... <u>We</u> want to use ALL the collected data right NOW

Long-term archival

**Artificial Intelligence** 

Ready-to-be-processed





## **Big and Fast Data: "TLC is the new black"**

#### Big and fast data requires dense and fast NAND flash chips



- Up to 8 Tbit per BGA
  package
- More than 32K blocks
- More than 2K pages per block
- Average tPROG of 3
  ms
- Average tREAD of 100 µs
- Average tERASE of 10 ms

6



Flash Memory Summit 2018 Santa Clara, CA



# LDPCs are very good ECCs not because of the hard decoding capabilities...

- Hard decoding is similar to BCH
- Soft decoding approaches the Shannon limit

## HOW?





#### From the information theory...

 Given a set of read references discriminating a region of the channel, the LLR is the logarithmic ratio between the probability of being a 0 and the probability of being a 1 in that specific region.





### LDPC Soft Decoding



#### Step 1: Hard decoding failed

#### Bits from read codeword are used as input for the decoder

Flash Memory Summit 2018 Santa Clara, CA

**Step 2: Collect more** information around the hard reference (HD) with two more reads (SD<sub>11</sub> and SD<sub>12</sub>) and compute **LLRs** 

LLRs

SD<sub>12</sub> SD<sub>11</sub>

HD

0



Step 3: Combine HD, SD<sub>11</sub>, and SD<sub>12</sub> to the corresponding LLR

LLRs are used as input for the decoder



### The "devil" in LDPC soft decoding

The real problem in soft decoding is neither the hardware complexity nor the decoder latency.

#### Calculating the right soft information is the real problem

- How many reads after the hard?
- Where should the read references be put?

Many papers solve the soft information calculation problem by:

- 1. Fixing an average RBER
- 2. Calculating the corresponding AWGN channel
- 3. Calculating the LLR values neglecting the NAND behavior

## But... is it really true that AWGN channels and a NAND flash memory behave in the same way?





#### LLRs Calculation @ Microsemi FSPL: Software

- LLR Toolbox (customer specific)
  - Optimal read reference position calculation for best FER/power/latency
  - Raw LLR values calculation
- LLR mapper (Microsemi Flashtec<sup>™</sup> specific)
  - LLR scaling for best FER/power/latency

## **Fully Integrated LLR Calculation Flow**

Flash Memory Summit

Microsemi's char data

**LDPC Simulations** 





## **AWGN Channel and NAND Channel**





Santa Clara, CA

Once the optimum LLRs are computed, it is possible to calculate the right amount of reads needed for a successful correction depending on the target code rate





- The AWGN channel and NAND channel don't match
- Being able to extract the right NAND channel is key for good LLR calculation
  → A fully integrated framework is the problem solver



- LLRs reliability depends upon the channel statistic → Huge statistic is mandatory
- With the upcoming QLC, having good LLRs will become a key point to reach the target reliability



## **Thank You**

## Q&A

#### Come visit us at booth #213 www.microsemi.com