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FlashMemorY Error Recovery Flow
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FlashMemory Error Recovery Scheme with ML
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Category Iltem Description Remark
P/E Cycle 0, 1000, ...~
Temperature (Random)
Dwell (Random)
Test Item Data Retention 0, 1,...~ (Days) Room/High Temperature
Read Disturb 0, 1000, ... ~ High Temperature
Cross-Temperature HT/LT Write — LT/HT Read

 An Error Recovery Scheme is developed by Machine Learning
 This Scheme can be applied to variant operation condition

( combination of {PE, DR, RD, Temperature, Cross-Temperature} )
e This Scheme can extend the endurance and reduce the latency




FlashMemory Endurance with Hard Decoding

Decoding Coverage/Endurance Comparison
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e Qur Error Recovery Scheme use ML to find Optimal Parameters for variant
operatfion conditions ( combination of {PE, DR, RD, Temperature} )

e 5x Extension for Baking Time & 2x Extension for P/E Count



rlaSHMemory Prediction Model - Optimal Read Level
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Example: Data Collection _Feature Selection

Input | Input | Input | Input | Input | Input | Optimal HD
Para 1 | Para 2| Para 3| Para 4| Para 5| Para 6| Read Level

Datal [ 1100 [ 589 | 1794 | 6322 | 1000 [ 1000 6 —
Data2 | 932 | 908 | 1503 | 7849 | 500 | 500 -5 E
Data N | 990 | 842 [ 1894 | 5692 | 300 | 400 | 3 | E

Nomalized Constraint ¢

 What's the Optimal HD Read Level after n Days/Weeks?

* Input Parameters:
- P/E Cycle, Retention Time, Read Count, Temperature, Dwell ...
Program/Erase Time, Histogram ...
« Regression Problem:
- Ordinary Least Square(OLS) Regression
- Ridge Regression (Hoerl and Kennard, 1970)
- Other Regression Analysis can be used to solve this problem
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FlashMemory Throughput/IOPS Comparison

Read Performance Comparison ( 4K Rand I0PS )
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* Proposed Error Recovery Scheme always has less read latency
compared with Traditional Error Recovery Scheme



FlashMemory Optimized Read Retry Sequence
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rlas;hMemory Read Retry Table - Clustering
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Billions of ECC Chunks Info were collected over dice under different failure mode

P/E Baking | Optimal Optimal
Die Plane BLK WL PageType .
gelyp Count Time Read LV1 | Read LV2
2 0 100 64 0 3000 24 +10 -6
ECC 2 1 101 78 0 4000 24 +7 +9
Chunks
Info 3 1 120 31 0 4000 36 +3 -12
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Normalized Vread2
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FashMemory Reqd Retry Table - Coverage

How many Retry Tables are required to cover the following case ?
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FlasnMemory Reduced Retry Table - Coverage

Find some indexes to reduce retry tables without Coverage Loss
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FlashMemory Reduced Retry Table - Latency

Change Default Read Level and the Priority of Retry Table dynamically
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Read Performance Comparison ( 4K Rand IOPS )
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AasiMemory Throughput with Future Status Prediction

Decoding Coverage/Endurance Comparison
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FlashMemory Difficulty For Future Status Prediction

 SuUMMIT |

Prediction Flow

Triggered ] P1 : Trigger Condition/Frequency ?

Select Block/Page

Block..,/Page P2 : Which block/page(s) should be selected ?

sel sel

Collect/Save

. H ‘I)
Required Parameters P3 : Important/Required Parameters -

P 1~3 : Machine Learning

Apply Future Status . . .
prediction Model | P4 : Operation Condition in 1 week !!!

Ex. Retry/Fail Rate, .
Optimal Read Level .. P5 . POWEF-Off I I I

after 1 week P 4~5 : Dynamically Adjusted Prediction Model
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FlashMemory Summary
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Current NAND Flash Endurance can be Greatly Extended
- Opfimal Parameters : Retry/Optimal Read Level, LLR
- Powerful Recovery Flow : Soft Decode, Future Status Prediction..
- The key pointis... QoS ( Quality of Service )
Error Recovery Scheme based on Machine Learning
- Optimized Read Retry Sequence
- Opftimal Read Level, LLR Estimation/Prediction Model
- Future Status Prediction Model

New Error Recovery Architecture

- Adjust Error Recovery Flow based on failure mode/operation condition
- Dynamically Adjusted Estimation/Prediction Model
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THANK YOU!

Any questions?

Come by LITE-ON " for Demos!

= |[earn about Machine Learning & the latest SSD Technology
=  Get achance to win special prizes!



