

# Autonomous Transportation – Phase 2

# Clodoaldo Barrera IBM Storage Systems

Flash Memory Summit 2018 Santa Clara, CA



Flash Memory



### Data Management for AV Projects is a challenge

### Flash Memory Summit

- $\circ$  Europe
- o USA
- $\circ$  China
- o Japan
- o Asia
- $\circ$  Africa





### **R&D Labs: tagging**





R&D Labs: developing & testing & (re-)simulation & AI training > 5PB / car model (project)





## Major IT Challenges for ADAS

1. How to implement & operate an efficient storage, workflow and management system?

- **2**. How to distribute data globally within an enterprise and partners?
- **3**. How to preserve digital data for decades with optimized costs?
- **4**. How to analyze sensor and video data with fast analytics and modern BigData tools?
- **5**. How to run Machine Learning (ML) and AI training with Nvidia GPU technology at scale?
- 6. How to do efficient IT workload and resource scheduling?
- 7. How to embed analytics/data management into R&D Environment?
- **8**. How to run massive workloads on large topology Clusters with data centric workloads?











### Workload and data flow for AI flow is complex

Flash Memory Summit

Machine Learning - Workload flow and data flow



## Data requirements vary significantly

Flash Memory Summit





## Data architecture for AI workloads

### **Capacity Tier**

#### Scale-out To scale capacity and performance linearly

Flexible deployment To deploy as an appliance, as software only on commodity hardware or as cloud services

#### Efficient

To store data across various media including Flash, Disk and Tape; to apply data reduction when possible; to store efficiently using Erasure Coding

#### Secure:

To protect data in-flight and data at risk

Multi-protocol To house various data types, structured, unstructured, semi-structured

Geo-dispersed To facilitate collaboration across long distances

### **Data Preparation**

#### High throughput

To curate massive amount of data including read and write operations

To feed multiple GPU's

example, each GPU could require 1-2 GB/sec; assuming 4 GPU's per server, each server could require 4-8 GB/ sec

### Performance Tier

Low Latency for Inference

To quickly read random and sometimes small data

## Distributed accelerated cache for Training

To read the same data over and over again 'reference data'

#### Governance:

Managing and curating data through different stages of processing

Resilient: To ensure data's availability against failures



## The Storage Hierarchy

#### Scale out File on Flash (HOT)

- File based storage with Object & HDFS support
- High End I/O performance
- Information Lifecycle Management (ILM)
- Sub Micro-seconds access time

### Cloud Object Storage (S3) (WARM)

- Site Fault Tolerant
- Geo Dispersed and WW scale
- Easy to Deploy
- Milli-seconds access time

### Archive & Tape (COLD)

- Lowest TCO
- Tape ILM target especially frozen archive
- · Long term retention and Minutes access time
- Access as files via LTFS
- Reduced floor space requirements and energy consumption
- Up to 260PB native capacity in a single Tape Library



- Tiering from flash, to disk, to tape, to cloud.
- Cloud appears as external storage pool.
- Auto Tiering & migration.
- High performance Read/Write operations.
- Public cloud-ready.
- Support of multi cloud environments.

