Introducing DPU: Data-storage Processing Unit Placing Intelligence in Storage

Qing Yang 杨庆 Founder & CSO, Shenzhen Dapu Microelectronics Ltd Co. 深圳大普微电子科技有限公司董事长 Distinguished Engineering Professor, IEEE Fellow University of Rhode Island

Data Explosion!

THINK BIG

Enterprise SSD Market

Worldwide Enterprise PCIe SSD Shipments (000s)

Source: IDC, Worldwide Solid State Drive Forecast Update, 2016-2020 (#US 40422516), May 2016

WE DO"THE UNIVERSITY OF RHODE ISLAND

大普创芯 智在存储

Rapid Advances of Storage Technologies

Data Growth + Media Tech

♦ Big Data, Cloud: Data Explosion

THINK BIG

WE DO" THE

OF RHODE ISLAND

- Applications Demand Fast Data-- High Performance, Secure, Reliable, Recoverable
- Emerging Device Tech, more Cost-Effective:
 - Flash, PCM, MRAM, RRAM
 These placed great challenges to the storage control and management

Existing storage controllers are far behind !

History of Computing

Decades ago, Displays were controlled by CPU/MCU

- Resolution, color, pixels increased greatly
- > CPU/MCU could no longer control modern displays
- As a result: GPU was born and developed

Today

GPU Plays a revolutionary role in computing ! We Believe

Storage control of big data has come to a historical point! CPU/MCU can no longer manage exponential growth of data and a variety of storage media technologies: Therefore, We introduce the first ever:

Data-storage Processing Unit: DPU

THINK BIG WE DO- THE UNIVERSITY OF RHODE ISLAND 大普创芯 智在存储

DPU

Data analysis and

encryption with

|=|=|0 |=|=|0 |=|=|0

FCE

Data

analysis

Image: A start of the start of

_ ↓↑ ____

Greatly reduce total amount data over I/O bus.

hardware inside storage

Improving data throughput rate Improving the performance of the entire system

Major Functions in DPU

Media Managements

- Flash Control
- Machine Learning of I/O Patterns
- > Minimizing Erasures & Adaptive RAID

Advanced Data Analytics

- Processing in Storage: PIS
- Placing data intensive computation closest to where data is stored

Storage Architecture

- Hierarchy and Tiering:
- Dedupe, Snapshot, Replication, and Failure Tolerance
- > Distributed SAN, E-W connectivity, NVMe over the fabric

Storage Media Management

Physical Properties of Flash Memory

- Reads are faster than writes
- Limited erase cycles
- > No in place write → GC, WL
- Write Amplification Problem
 - Slow down I/Os, Increase wearing, and hogging resources

Reinforcement Learning

- Classify I/Os into groups of similar or same rewrite intervals
 - Features and attributes
 - ✓ {R/W LBA, Timestamp, Re-reference interval, Recency, feedback, GC information}
 - > Pages of the same class will be written in one block
 - ✓ High performance, minimal WA
- Recognize I/O Patterns at Production Site
 - > Train and learn I/O behaviors after deployment
 - Optimization kicks in after a week or so
 - Adapt to any environment and applications

Measured Erase Count Results

Normalized Erase Counts

Major Functions in DPU

Media Managements

- Flash Control
- > Machine Learning of I/O Patterns
- > Minimizing Erasures & Adaptive RAID
- Advanced Data Analytics
 - > Processing in Storage: PIS
 - Placing data intensive computation closest to where data is stored
- Storage Architecture Scache

INIVERS

JF RHODE ISLAND

fabric

THINK BIG WE DO- THE

Hierarchy and Tiering

- Dedupe, Snapshot, Replication, and Failure Tolerance
- Distributed SAN, E-W connectivity, NVMe over the

大普创芯 智在存储

ADA: HW Search & Sort in DPU

***** Over 80% of Data are Unstructured

- Process of text data is critical
- > Software scanning is slow

Research on Accelerators for Text Search

- > Maximizing DRAM bandwidth
- I/O is still a burden
- Sorting & KV Store
 - > HW Sorting
 - Graph Processing

ADA1: REGISTOR in DPU

- Regular Expression Grabbing Inside STORage
 - HW search in SSD where data is stored
 - Only results or related files are sent to the host

ADA2 In-storage sort module

Divide and Conquer HW Sort Module

Unsorted data input:

ADA2: Sort performance

Single core speedup: 4.6~6x. Multi core speedup: 2~2.8x

THINK BIG

WE DO" THE

UNIVERSITY

OF RHODE ISLAND

大普创芯 智在存储

ADA3: Graph Preprocessing in DPU

Minimum Spanning Tree (MST) :

MST calculation:

- 1. Sort the entire edges
- 2. Edge connection

 \bigcirc

 \bigcirc

0

 \bigcirc

- 10, 7, 6, 5
- 21, 12, 11, 3
- 13, 10, 8, 7
- 22, 4, 4, 1
- 39, 23, 32, 5
- 12, 8, 7, 6
- 40, 33, 21, 8
- 24, 23, 20, 1

 \bigcirc

 \bigcirc

大普创芯 智在存储

MST performance

96-cores CISC vs single-core CPU baseline: 11.47~17.2x

THINK BIG

WE DO" THE

UNIVERSITY

OF RHODE ISLAND

大普创芯 智在存储

ADA4: HW Deserialization

Future world will be sensor driven world

- Huge amount of sensing data files
- Numbers are stored in readable and exchangeable formats: ASCII, Unicode etc.
- To Process Data Using Computers
 - Readable data need to be converted to binary
 - > Host CPU is very inefficient
 - Time Consuming, up to 60% of Total Processing Time

Performance of DPU vs. Server CPU

Throughput of Server
Throughput of DPU

Major Functions in DPU

Media Managements

- Flash Control
- > Machine Learning of I/O Patterns
- Minimizing Erasures & Adaptive RAID
- Advanced Data Analytics
 - Processing in Storage: PIS
 - Placing data intensive computation closest to where data is stored

Storage Architecture

UNIVERSI

OF RHODE ISLAND

WE DO-THE

THINK BIG

- Hierarchy and Tiering
- > Dedupe, Snapshot, Replication, and Failure Tolerance
- > Distributed SAN, E-W connectivity, NVMe over the fabric

大普创芯 智在存储

IST: Intelligent Storage Tiering

- Media: Flash, PCM, MRAM, Memristor etc:
 - ✓ Different Speed
 - ✓ Different Cost
- What Do Users want:
 - ♦ \$↓ & Speed ↑ & Power ↓ & Ease of use & Reliability ↑

Distributed SAN Functions in DPU

***** East-West Connectivity

- > Support Distributed SAN with HW
- > NVMe over the fabric
- DPU-Link
 - > Allow customized HW/Chip to be connected
 - > AI training and inference made fast
- **Support Multiple Protocols**
 - > iSCSI, FC, NVMe over the fabric
 - > NAS card

THINK BIG

> Snapshot, Replication, Recovery, and more

Summary and Conclusions

A New Concept for Next Generation Storage Proven Advantages on Current SSDs

Thank You!

Q & A

