

### **IP-Based NVMe Development Platform**

### Mickael Guyard Product Marketing Director (IP-Maker)



- The need for NVMe IPs
- NVMe device platform
- NVMe host platform
- Use cases and applications



# Part 1 – The need for NVMe IPs



# NVMe the new universal interface

- The new universal interface for storage
  - First specification released in 2011
  - 13 board members
  - 90 companies with NVMe-based products (G2M research report)
- But not only...





# **NVMe** applications

- Storage: PCIe SSD
- Cache: PCIe MRAM and NVRAM
- Processing accelerator











# FPGA in the data centers





Reduces total cost of ownership (TCO) by using standard server infrastructure Increases flexibility by allowing for rapid implementation of customer IP and algorithms

Source: Intel Presentation

Flash Memory Summit 2018 Santa Clara, CA

Market Realist



# The need for NVMe IPs

- Massive usage of FPGA in data centers
- NVMe as a universal interface
- New architectures

- =>NVMe IPs for FPGA are needed
  - Both device and host



### **IP-Maker IPs**

### **IPM-NVMe-Device**

### **NVMe Controller Device**

- 1.3 specification
- Multi Channel DMA
- Automatic command processing

### 300ns Latency / 1.5M IOPS\*



\*250MHz FPGA/ASIC clock, Gen3x8

#### Flash Memory Summit 2018 Santa Clara, CA

### IPM-NVMe-Host

### **NVMe Controller Host**

- Automatic NVMe Command management
- Automatic PCle/NVMe init



### IPM-UNFC IPM-ECC

### NandFlash Controller

- ONFI 4 Compliant
- SLC/MLC/TLC

### **Error Correction Code**

- Configurable BCH
  - Error number
  - Block size

### 800MB/s Channel



All IPs: AXI, Avalon or proprietary interface



# Part 2 – NVMe Device Platform



# NVMe protocol







### **Key Features**

- 1.3 NVM Express specification
- Automatic NVMe command
- Up to 65536 I/O queues
- Queue arbitration
- All mandatory commands / log management
- Legacy interrupt/MSI/MSI-X
- AXI/Avalon interface
- Up to 32 Read DMA channels + 32 write DMA channels
- Scalable data buswidth (64/128/256 bits)
- Available for PCle Gen1/2/3

### **Full hardware**







# HW/SW architecture

- Automatic command processing => Low latency
- Multi-channel DMA => IOPS acceleration





## Validated platforms



Fidus Sidewinder – Zynq Ultrascale+



Nallatech 250S+ - Kintex Ultrascale+

Flash Memory Summit 2018 Santa Clara, CA



#### VC709 – Virtex7



KCU105 – Kintex Ultrascale



### **Reference design**







### Performances

- Setup
  - Hardware : reference design
  - Standard NVMe driver
  - Use of standard benchmark tool for storage: FIO
    - Latency
    - IOPS





### QD=1, IO=4kB

#### NVMe IP (Command fetch + data management) 12.8µs File system+ NVMe driver Doorbell, Command read Measured with FIO Data transfer FPGA clock 125MHz Host IRQ management + PCIe latency Gen3x4, OS IRQ **7.8µs** 600ns from the NVMe IP Measured with FIO 5.3µs FPGA clock 125MHz Estimated Gen3x4, OS polling mode ASIC clock 1GHz Gen3x8, OS polling 600ns from the NVMe IP 75ns from the NVMe IP





- Gen3x4, QD8, 4kB IO, random R/W
  - 700kIOPS
- High IOPS at low queue depth
- Scalable data path : up to Gen3x16, Gen4 x8



### Part 3 – NVMe Host Platform



### **NVMe Host IP overview**







# **Different configurations**

### Single port, up to 128 queues



### N\* root ports, 1 queue



Flash Memory Summit 2018 Santa Clara, CA

### \*depending on FPGA interfaces





### **Key Features**

- NVM Express Compliant
- Automatic NVMe Command management
- Automatic PCIe/NVMe init
- Multi rootport support
- Single I/O queue
- Single Namespace
- Vendor specific commands
- Up to PCIe Gen 3x8







### **Key Features**

- NVM Express Compliant
- Automatic NVMe Command management
- Automatic PCIe/NVMe init
- 128 I/O queues
- Vendor specific commands
- Single Namespace
- Up to PCIe Gen 3x8





# **Open Channel support**

- Full submission command control all vendor specific commands are possibles The complete control is possible.
- Full completion control



### Validated platforms



Fidus Sidewinder – Zynq Ultrascale+



### Nallatech 250S+ - Kintex Ultrascale+

Flash Memory Summit 2018 Santa Clara, CA



KCU105 – Kintex Ultrascale



# **Reference design**

- Host IP configuration
  - 1 root port
  - 1 queue version
- Embedded test bench



**Ultrascale Xilinx FPGA** 

Samsung NVMe 960EVO Gen3x 4 PCIe interface



### Performance

### Performance

- Write : 2.2 GB/s
- Read : 3.2GB/s

#### **Technical Specifications**

| Samsung SSD 960 EVO      |                           |  |                                       |                    |                            |
|--------------------------|---------------------------|--|---------------------------------------|--------------------|----------------------------|
| Usage Application        | Client PCs                |  |                                       |                    |                            |
| Interface                | PCIe Gen 3.0 x4, NVMe 1.2 |  |                                       |                    |                            |
|                          | Capacity                  |  | 250GB <sup>†</sup>                    | 500GB <sup>†</sup> | 1TB(1,000GB <sup>†</sup> ) |
| Hardware                 | Controller                |  | Samsung Polaris Controller            |                    |                            |
|                          | NAND Flash Memory         |  | Samsung V-NAND 3bit MLC Flash memory  |                    |                            |
| information              | DRAM Cache Memory         |  | 512MB LP DDR3                         |                    | 1GB LP DDR3                |
|                          | Dimension                 |  | Max 80.15 x Max 22.15 x Max.2.38 (mm) |                    |                            |
|                          | Form-Factor               |  | M.2(2280) <sup>++</sup>               |                    |                            |
| Performance*<br>(Up to.) | Sequential Read           |  | 3,200MB/s                             |                    |                            |
|                          | Sequential Write          |  | 1,500MB/s                             | 1,800MB/s          | 1,900MB/s                  |
|                          | QD1 Ran. Read             |  | 14,000 IOPS                           |                    |                            |
|                          | Thread 1 Ran. Write       |  | 50,000 IOPS                           |                    |                            |



## Part 4 – Applications



### Use cases and applications

- PCIe Flash
- NVRAM
- Emerging NVM
- Smart SSD





PCIe board or custom flash module



HBA NVME2NVMe







# **NVRAM Reference design**

- NVMe device ref design close to a endproduct
  - Detected as a NVMe device by the driver
- Just need to add « non-volatile » feature





### **PCIe NVRAM**

# Using NVDIMM-N like technologyOr using directly a NVDIMM-N







- Specification
  - Up to 32GB
  - 1.5MIOPS on Gen3x8
  - 10us latency



# Flash Controller IP



- 🥏 BCH
- 🔿 LDPC



• MRAM support





# NVMe to NVMe HBA

### • For NVMe SSD aggregation:

• Better performance and reliability





# NVMe to NVMe HBA

- 2.5 x86 cores full time at 3GHz required to sustain 750kIOPS on each SSD
  - 10 cores total!



=>Need of hardware accelerator engines



# NVMe to NVMe HBA

### Let's use both NVMe device and host IPs





## NVMe to NVMe



4 x Gen3x4



### Namespace management

### Many configurations

- Basic capacity aggregation: one namespace across the 4 SSDs
- Asymmetric : one namespace on one SSD and 10 namespaces on the 3 other SSDs.
- Multi namespaces with different characteristic (encryption, compression...) seen only as one storage SSD.
- Raid 1 storage totally transparent for the host software.



### Path to computational storage

 Advanced computing accelerators can be added such as key-value store, search engine and deep learning





### Contact mickael.guyard@ip-maker.com

### Visit IP-Maker booth #710 NVMe live demo!