facebook

Enabling NVMe[®] I/O Determinism @ Scale

Chris Petersen, Hardware System Technologist Wei Zhang, Software Engineer Alexei Naberezhnov, Software Engineer Facebook

Industry Trends Flash and CPU continue to diverge

Dark Flash

Flash Workloads @ Facebook

- Read Intensive with bursty writes
- Facebook flash applications are sensitive to read latency
 - Especially read latency outliers
- Multiple, concurrent instances

Sources of Read Latency External (aka Noisy Neighbors)

Sources of Read Latency

Internal (within the application)

- Read latency outliers are caused by "collisions" with
 - 1. Concurrent flash writes
 - 2. Flash background operations:
 - Garbage collection
 - Wear leveling
 - Read scrub
 - Block erase
- Error correction
- Exception handling (e.g. program/erase failures)

Read time	~60– 100us
Program time	~1 – 1.5ms
Erase time	~10 – 15ms

Solution: NVMe[®] I/O Determinism

NVMe standards have been ratified!

- NVM Sets and Read Recovery Level (TP 4018a)
- NVMe Predictable Latency Mode (TP 4003a)
- Additional improvements are a work in progress!

facebook

NVMe[®] I/O Determinism: NVM Sets

NVM Sets

- An abstract allocation of SSD HW resources
- Each set has dedicated NAND resource
- Each set can have dedicated channels, depends on architecture
- Each set carries out its own writes and background operations
- Physically isolated to avoid "Collison" caused by the noisy neighbors

Stripe within channels like this:

Benefits

- Enables QoS Regions at the SSD level
 - Better support of multi-tenants on an SSD
- Host software can leverage sets as-is
 - Part of the NVMe Standard
 - Sets are exported as namespaces
 - Host OS does NOT need to be sets-aware

Use Cases @ Facebook

Aligns with Facebook's Disaggregated Flash Strategy!

Evaluation Setup

SSD with 4 Namespaces (No Sets)

Workload Patterns

- All namespaces run the same workloads
- Noisy Neighbors
 - One namespace runs the target workload (NS1)
 - The rest of three namespaces act as noisy neighbors (NS2-4)

Neighbors with Same Workloads

read latency averaged across all NS under test

Noisy Neighbors

Current Implementation Limitations

- NVM Sets is non-trivial to implement with the current SSD architecture
 - Hard to partition all resource in the current generation of controllers
 - Design the NextGen sets-aware SSD controller
- Lack of per-set endurance group info
 - TP 4050: Endurance Group Information Enhancements
- SQs are not associated with Sets
 - TP 4045: SQ Associations

facebook

NVMe[®] I/O Determinism: Predictable Latency Mode

Effects of Internal Activities on Latency

- Internal operations account for most of NAND activity:
 - 7% OP results in 14.3x worst-case WA
 - 28% OP results in 3.6x worst-case WA
- Internal operations usually happen in batches
- Scheduling of internal operations is a black box to the host

Latency Improvement Approaches

- Load limiting (e.g. queue depth, bandwidth)
- Over-provisioning
- Program/erase suspend
- Open-channel
- NVMe Predictable Latency Mode (PLM)

NVMe Predictable Latency Mode (PLM)

- Allows host to decide when internal operations may happen
- Drive encapsulates scheduling algorithm and all media details
- Drive advertises only required details about scheduling capabilities:
 - Estimates of time, # of reads and writes until maintenance is required

NVMe PLM: Contract

Host agrees:

- Not to send writes or trims during D-window
- Respect window estimates advertised by the drive

Drive agrees:

- Not to do operations unrelated to reads during D-window
- Drive may switch back to ND-window if contract is broken

NVMe PLM: Prototype

Goals:

- Improve consistency of read latency
- Achieve read-only like latency for mixed workloads

Approach:

 Leverage data redundancy & PLM to segregate reads from other operations

NVMe PLM: Write Cache

Prototype uses RAM cache that relies on NVMe meta-data for power fail recovery

Benefits:

- Flexible configuration
- Minimal impact on performance
- No need for additional hardware
- Allows R/W access during recovery*

В	oot block	Boot block	
V2	Data block	 V2	Data block
V5	Data block	 V5	Data block
V1	Data block	 V1	Data block
V3	Data block	 V9	Data block
V7	Data block	 V7	Data block
V4	Data block	 V4	Data block
V0	Data block	 V0	Data block
V8	Data block	 V8	Data block
V6	Data block	 V6	Data block

Recovery:

 Check boot blocks
Clean shutdown?
Check data block pairs for version mismatch

NVMe PLM: Kernel support

<u>MD:</u>

New Raid1-PLM personality

Block Layer:

- Expose PLM interface
- Expose generic metadata interface

NVMe Driver:

- Implement PLM interface
- Add support for generic metadata
- Add support for set associated SQs

NVMe PLM: Test setup

- Same usable capacity, read & write rate
- Random read 4K @ QD8
- 1:2 mix of random and sequential writes 128K @ QD8
- Initialized with 2 passes of mixed writes

NVMe PLM: Proposition

	RAID1 (2	2 drives)	RAID5 (4 drives)		
	Array vs 1 Drive	Utilization	Array vs 1 Drive	Utilization	
Capacity	100%	50%	300%	75%	
Write BW	50%	25%	75%	18.75%	
Read BW	100%	50%	200% 50%		
Extra Hardware	none		NVRAM		
Read Latency	read-only like		almost read-only like		

NVMe PLM: Future work

- Explore other redundancy schemes
- Explore other power fail recovery schemes
- Explore multi-set configurations (requires TP4045)

facebook

Thank You!

Check out this I/O Determinism talk too:

The Reality of an NVMe IO Deterministic Drive Using QLC Steven Wells, Fellow – SSD Data Center Architecture August 7th, 4:50pm