

### Enterprise Flash Storage Annual Update

#### Flash, It's not just for tier 0 anymore Or Flash is the new black





Santa Clara, CA August 2018



### Your not so Humble Speaker

- 30+ years of consulting & writing for trade press
- Occasional blogger at TechTarget
- Chief Scientist DeepStorage, LLC.
  - Independent test lab and analyst firm
- Cohost Greybeards on Storage podcast



Hmarks@DeepStorage.Net

@DeepStorageNet



- A brief history lesson
- The shift from SSD to NVMe
- NVMe over fabrics the new lingua franca
- A look in the crystal ball





#### A Decade of Enterprise Flash





#### 2007

#### 2010

arrays

• High cost

Endurance fears

• Hybrids emerge

- Rackmount SSDs SSDs in DISK
- Texas Memory
- Violin Memory
- Fast but niche

10



#### 2014

- Flash understood
- All Flash Arrays
- Costs close



#### 2018

- Flash is mainstream
- Full data services & data reduction
- Cost effective for most applications



Flash is just the default

- All flash ~\$8bil/yr w/12% projected growth
- Disk is still cheaper
  - But being reserved for:
    - Secondary
    - Rich media
- Users are over endurance & deduplication fears
- Shift back to full featured arrays from purpose built AFA





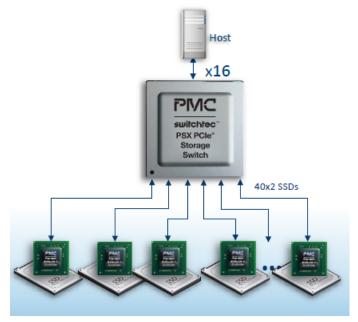
- 2008-2015 SSD \$/GB -30%/yr
- 2016-2018 maybe 30% total
- Last year I said "Relief to come late 2018/19"
- Supply is easing
  - 96 layer QLC
  - Process improvements
  - New fabs
- Expect 30+% CAGR





# **Enterprise SSD Evolution**

- Further fragmentation
  - Optane/Samsung Z-NAND NVMe
  - 100TB 6gbps SATA
- U.2 across server vendors
  - New form factors:
    - Samsung NGSFF
    - Intel Ruler








### Solid State Drive to Solid State Device

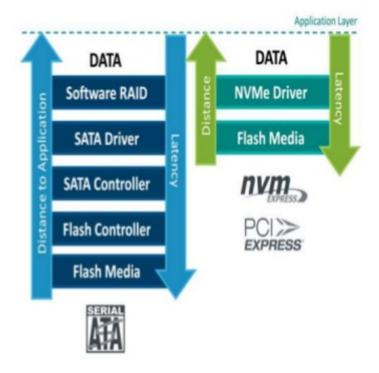
- Dropping the HDD form factor
  - M.2 for boot
  - Ruler/NGSFF for hot-swap
  - Better cooling and density
- PCIe replaces SAS/SATA
- PCIe Switch chips vs SAS Expanders
- NVMe replaces SCSI as lingua franca
  - Over PCIe locally
  - Over fabrics





### **PCIe Advances**

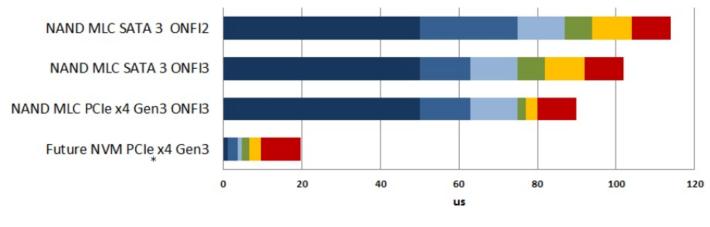



- PCle 4.0
  - Doubles bandwidth/lane to 2GBps
  - Driven by 100Gbps Ethernet & NVMe
  - Power systems shipping now
  - x86 Next server chipset release
- PCIe 5.0 close on its heals
  - .7 version issued May 2018
  - Adoption planned Q1 2019
  - 400Gbps Ethernet ≅ x16 slot
  - Servers and such 2020?

|     | Sp<br>ec<br>Dat<br>e | Raw  | Bandwi<br>dth per<br>lane | x8<br>Gbps |
|-----|----------------------|------|---------------------------|------------|
| PCI | 200                  | 2.5G | 250MB/                    | 16         |
| e 1 | 3                    | T/s  | s                         |            |
| PCI | 200                  | 5.0G | 500MB/                    | 32         |
| e 2 | 7                    | T/s  | s                         |            |
| PCI | 201                  | 8.0G | 984MB/                    | 64         |
| e 3 | 0                    | T/s  | s                         | (63.04)    |
| PCI | 201                  | 16GT | 1969M                     | 126        |



### NVMe 101


- Gen1 and 2 PCI SSDs
  - ACHI (SATA command set)
  - Propreatary (Fusion-IO, Verident) with heavy software
- Enter NVM Express
  - A new software protocol for non-volatile memory access
- Lower compute overhead than SCSI
- 64K queues of 64K entries vs SCSI 1 queue of 32 entries





#### NVMe = Lower Overhead & Latency

App to SSD IO Read Latency (QD=1, 4KB)



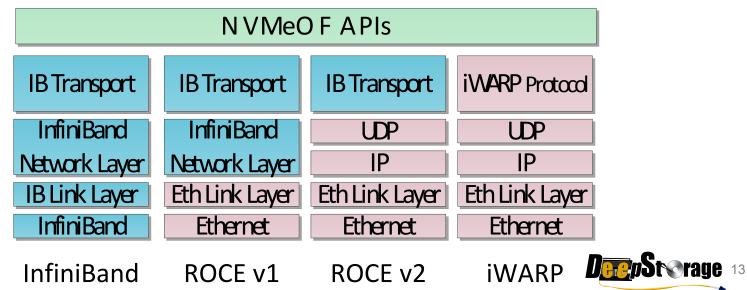
■ NVM Tread ■ NVM xfer ■ Misc SSD ■ Link Xfer ■ Platform + adapter ■ Software

- By 2016 NVMe is leading from desktop M.2 to the datacenter
- But limited to internal SSDs



## NVMe Over Fabrics (NVMEoF)

- Extends/encapsulates NVMe semantics over
  - Ethernet with RMDA
  - Fibre Channel
  - Infiniband (no products yet announced)
  - TCP
- Adds name spaces and discovery
- 10-50µsec protocol and network overhead








## **NVMeOF Ethernet Options**

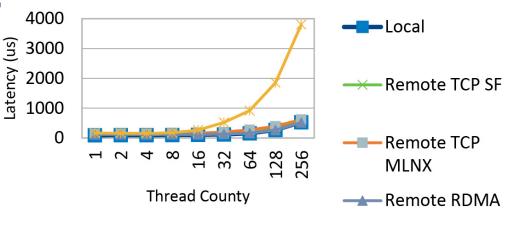
- RDMA over Converged Ethernet (ROCE)
- iWARP (Internet Wide-area RDMA Protocol)
- RNICs generally support ROCE or iWARP





## **NVMe Over Fibre Channel**

- Fibre Channel
  - Zero copy vs RDMA
  - Flow and congestion control
- Gen5 (16) and Gen6 (32Gbps) Fibre Channel
- One fabric for SCSI and NVMe
- Keeps storage network in storage domain
- The safe move in enterprise





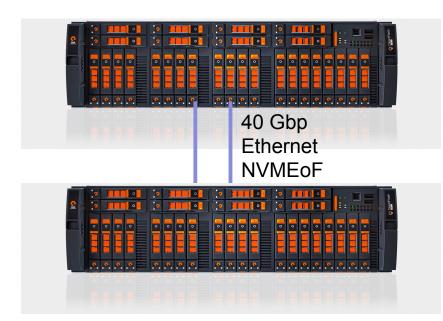

## NVMe over TCP

- Encapsulates NVMe verbs in TCP
- Relies on TCP low control
- NIC offload optional
- No switch config requirements
- Nominal latency addition
- Supporters:
  - SolarFlare
  - Cavium
  - Toshiba
- Greybeards on Storage

LATENCY - Sustained 4K Random Read






### **NVMeOF** Pioneers

- Apeiron 40Gbps Ethernet switch in JBOF
- E8 Dual controller array basic services
- Mangstor x86 NVMEoF target
- Excellero Low CPU SDS, RDMA





#### Pure FlashArray//x



- Replaces //m SAS SSDs with NVMe flashmodules
- Expansion via SAS or NVMEoF JBOF
- NVMEoF target on 40Gbps Ethernet
- Full services



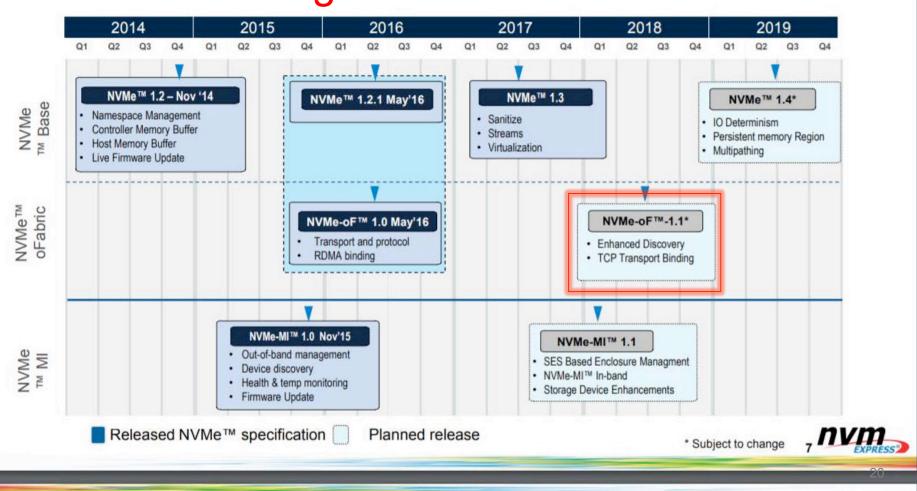
## Dell/EMC PowerMAX

- Should end the "designed from scratch for flash" argument
- All the Symetrix/VMAX software goodness
- NVMe media
- NVMe over fabrics promised
- Scaleout x86 & FICON



| PowerMax 2000      | PowerMax 8000         |  |
|--------------------|-----------------------|--|
| 1.7M IOPSRH-8K     | <b>10M</b> IOPSRRH-8K |  |
| 1PBe Capacity      | 4PBe Capacity         |  |
| 1 to 2 PowerBricks | 1 to 8 PowerBricks    |  |



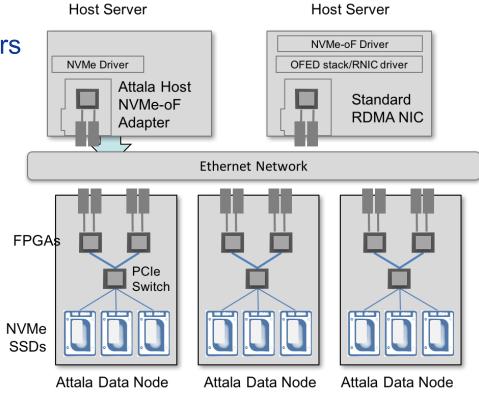

# NetApp and IBM Go NVMEoFC

- IBM FlashSystem 9100
  - 24 flash modules (19.2TB, 384TB net)
  - 16Gbps FC, NVMEoFC\*
  - SVC based services
- NetApp A series AFF
  - A800 48 SSD slots
  - Sub 200µsec latency, 11 millionIOPS
  - Data OnTap services



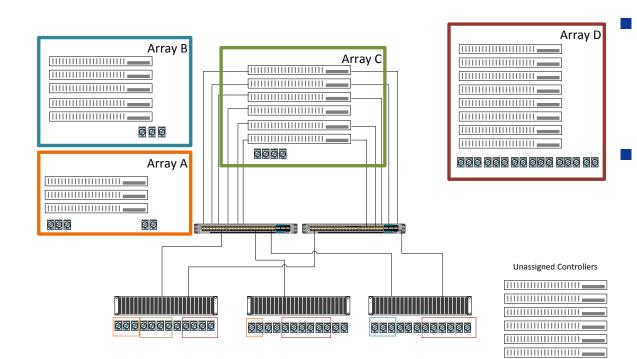









## NVMe JBOFs Emerge


Today's JBOFs are x86 servers

- Eg: Toshiba KumoScale
- High flexibility
- High cost
- NVMEoF ASICs
  - Vastly reduce costs
  - Sampling from
    - SolarFlare Xilinx
    - Kazan Networks
    - Attala Systems





### Kaminario K2 Composeable



#### **NVMEoF**

- Controller to JBOF
- Host to array (opt)
- Dynamically assign controllers and flash to virt array





Persistent Memory Now GA

- Scaleable Xeon servers support NVDIMM-N
- Good for software delivered storage
  - Small (8-16GB)
  - Expensive (2-3X DRAM)
- Full OS/Hypervisor Support
  - Windows
  - vSphere
  - Linux





### NetList's HybriDIMM

Combines DRAM-Flash



- Conceptually like Diablo/Sandisk UltraDimm )
  - Access:
    - DRAM as std memory
    - Flash w/DRAM buffer as Block storage
    - Flash as persistent memory via Linux Library
    - No special BIOS support needed
    - 128-512GB









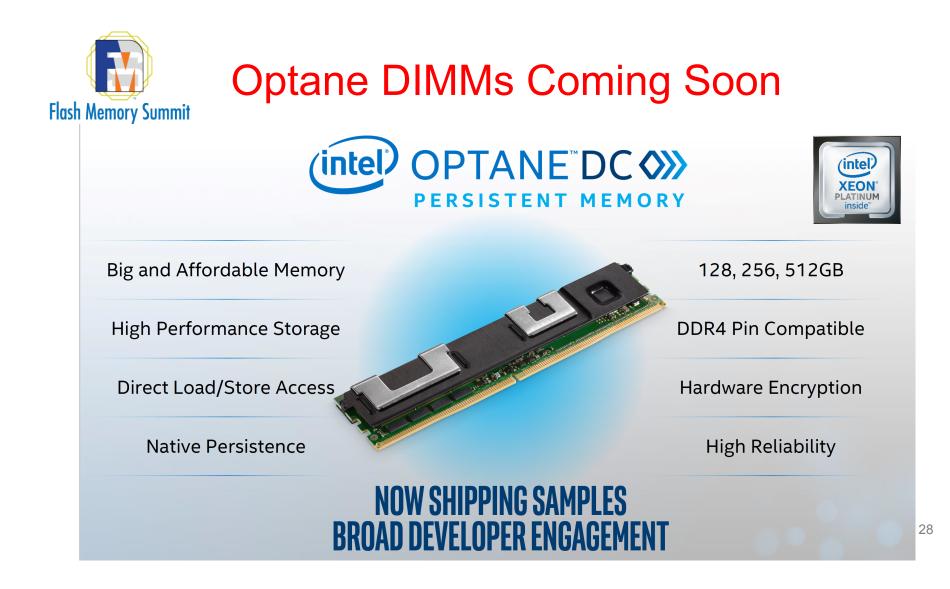


Flash Memory Summi Santa Clara, CA



- All PCIe NVMe storage systems
  - As conventional storage
  - With memory interfaces
- Next-gen memory (PCM, 3d Xpoint, Etc)
  - First as write cache in SSD
  - Later as memory
  - Taking a bit longer than expected
- More persistent memory as memory
  - Needs application support ala SAP Hana Deres Storage 26

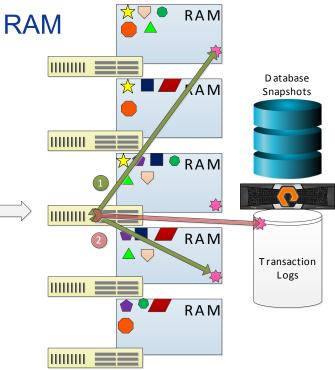





**Storage Class Memory** 

- As well defined as Software Defined
- For me:
  - Inherently persistent
  - Latency between DRAM and NAND Flash
  - Addressable as memory

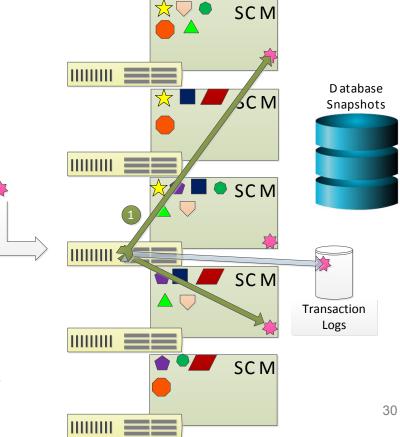
     Not SSD, not NVMe
  - Capacity 4-∞X RDIMM
- Defines material AND implementation

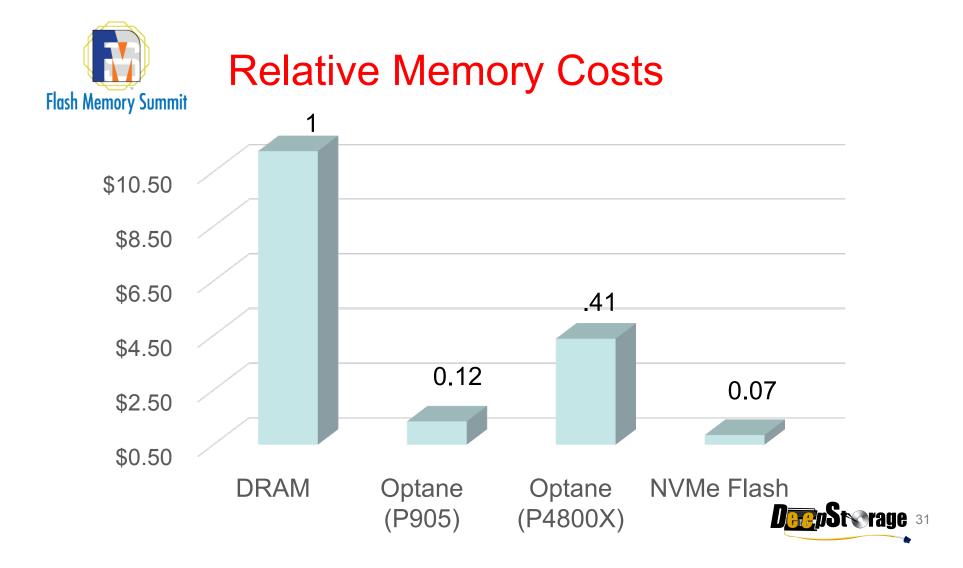







## In Memory Databases Today


- All database operations performed in RAM
- Data replicated across nodes (x86)
- AFA/HCI back end for persistence
  - Snapshots
  - Transaction Logs
  - Playback in case
- On write:
  - 1. Replicate to 1-n nodes
  - 2. Write to persistent log (typically AFA)
  - 3. ACK




## In Memory Database with SCM

Flash Memory Summit

- Much larger capacity/node
  - 512GB vs 64GB/DIMM
  - 10X latency (SWAG)
- Lower cost /GB
  - 2-10X we guess
  - More vs 128GB LRDIMMs
    - 3X cost of 64GB
- ACK after n-node write
  - Can be RDMA write
  - Data now persistent
  - Log writes can be aggregated, async





