Intelligent Secure Storage for Industrial IoT

Solid State Storage and Memory

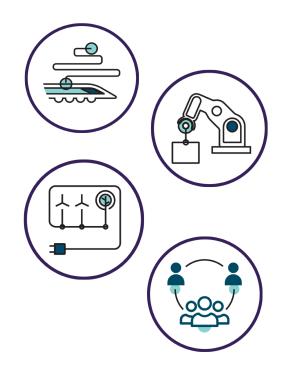
Creating Reliable Embedded Systems with Flash Memory

Design Tools for IoT Storage

Scott Phillips

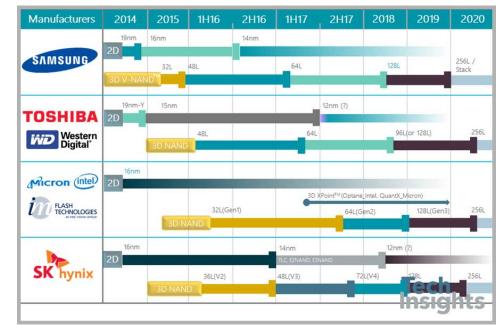
VP, Marketing

Virtium Solid State Storage and Memory | 30052 Tomas, Rancho Santa Margarita, CA 92688 | www.virtium.com



The Market / Challenge

Industrial IoT Use Cases



- > Transportation / Aviation 2.5PB of data per flight
- > Industrial Automation 10 Billion samples per day
- > Energy (Oil & Gas, Metering) 2-8TB of data per day
- Asset Tracking / Supply Chain
 4 Billion data messages per day
- IoT Storage Capacity
 87 exabytes shipped by 2021

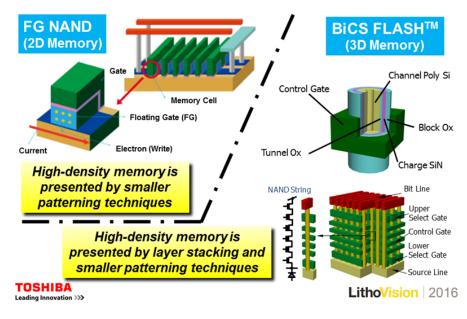
NAND Flash Landscape

An arms race (that may not benefit Industrial IoT)

- Big move to 3D with many transitions on horizon
 - $64L \rightarrow 96L \rightarrow 128L$
 - MLC \rightarrow TLC \rightarrow QLC
- Primary focus on capacity, enterprise/client data
- > TBW typically decreases
- > Offerings short-lived

3D NAND Attributes

Improvements over 2D but with some challenges

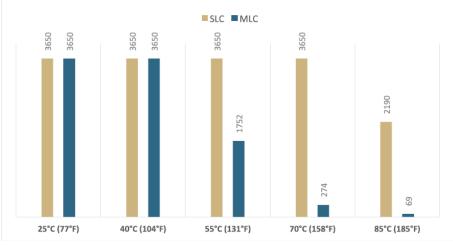

> 3D NAND's charge trap has it's advantages

- Scalable to larger capacities
- Faster read/write operations
- Lower energy consumption

> But...some disadvantages

 Charge loss issues can result in lower data retention, especially at temperature

FG NAND (2D) vs BiCS FLASH[™] (3D)


Visibility to workload and temp effects on data retention important

Data Retention & Temperature

A persistent problem getting worse?

> 2D MLC exhibits significant data retention loss at higher temps

- > Will 3D TLC be better, same or worse?
 - Charge loss an inherent issue that increases with temp
 - Can cause a large increase in RBER unless controller can shift read voltage to compensate for charge loss

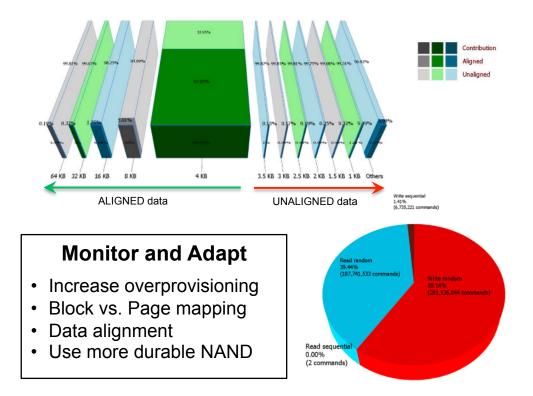
POWER-OFF DATA RETENTION (DAYS) AT DW ≤ 25

Visibility to data retention critical for reliable SSD deployment

Characteristics of Industrial IoT

Industrial IoT is different

- > IoT workloads very demanding
- Capacity requirements lower
- > Service life / availability 5+ years
- > Subjected to extreme temps
- Monitoring & predicative maintenance provide high ROI

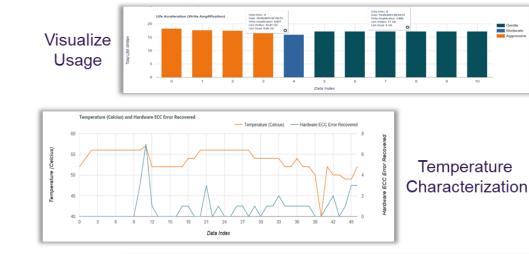

Industrial IoT Impact on Storage

Premature wear-out a concern, visibility key to addressing

Virtium Solid State Storage and Memory

> IoT data is demanding

- Typically small-sector, random, and unaligned
- Coming 24/7/365, often milliseconds at a time
- Stored locally for years at a time, often at high temp
- Can drive write amplification up by factor of 8 (or more)



Take Control

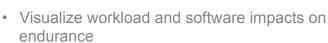
Industrial IoT Impact on Storage

Know your SSD

- Visibility to affects on SSD gives some control
 - Adapting to workloads can increase endurance
 - Optimizing software may be best overall solution
- > If all else fails....
 - Model application affects during qualification
 - Predict when maintenance is needed

Industrial Embedded Technology for Our Interconnected World

SSD Monitoring & Management Common SSD attributes


> Common SSD attributes worth monitoring

- Temperature (junction and ambient)
- Data Retention (how long, unpowered and at temperature)
- How changes in software / workload can affect endurance
- > Tools should be easy to use for quick evaluation
 - APIs for integration into existing software
 - Open source for monitoring/mgt of any SSD

vtView Monitoring & Management

regression analysis

Good tools make for good decisions

Engineering

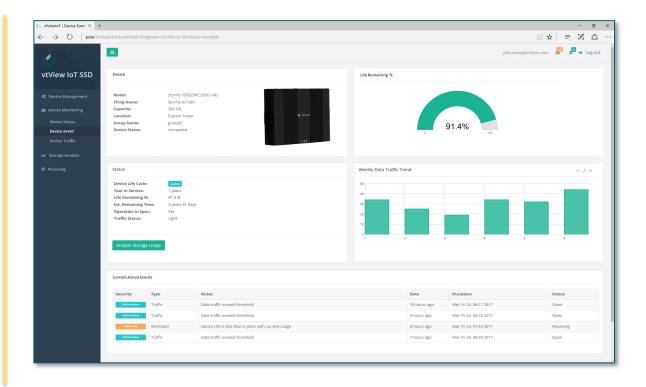
- · Visualize advanced features (TRIM) effects on endurance

Test Automation & System Regression

Field Service

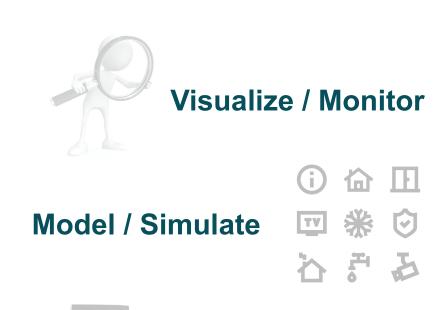
- · Provide historical data for understanding of field usage (workload, temp, errors)
- Allows for guicker debugging and problem identification

Storage Life Monitoring


Predictive Maintenance

Analyze / predict storage life based on actual usage

Push notifications and firmware updates


Set thresholds and alerts

Conclusion

Failing to plan is planning to fail

- Reliance on datasheets and controller/FW is not enough
- Know how your application affects storage
- Model/Simulate app workloads to identify best storage solution at project outset
- Select storage and software/ utilities that are flexible, scalable, and provide best TCO

Select & Manage

Thank You!