

3D NAND - Data Recovery and Erasure Verification

Robin England Hardware Research & Development Team Lead

The Causes of SSD Data Loss – What can go wrong?

- Logical Damage
 - · Data accidentally deleted, file system corrupted
- Physical Damage
 - Liquid, fire, physical stress
- Electronic components
 - Active and passive component failure
- Firmware
 - Main firmware cannot be loaded into memory from NAND reserved blocks
- System Area
 - Data tables corrupt or fail checksum
 - Improper shutdown caused loss of valid context / state information

SSD Controller Recovery versus Chip-Off Recovery - Overview Transient firmware **Ontrack hardware & software** Data out Flash Memory Summit module processes physical NAND data Error-correction • Descrambling / decryption Undo data striping ٠ NAND NAND Undo L2P mapping • Undo wear-levelling SDRAM NAND Data out CONTROLLER (Some NAND NAND external lashadapter 15.0 processing NAND may still NAND Special controller firmware be processes physical NAND data required) Error-correction Descrambling / decryption NAND Undo data striping Undo L2P mapping (possibly) Undo wear-levelling

SSD Controller Recovery versus Chip-Off Recovery - Comparison

Advantages of Controller Recovery

- No need to heat NAND •
- Faster recovery turnaround ٠
- Easier some / all processing (often) • done for us by controller

Advantages of Chip-Off Recovery

- None of the NAND is hidden from us
- We get a faithful copy of physical data •
- Gain knowledge of controller internal • processes
- Recovery still possible if:-٠
 - controller not functioning
 - no special firmware available
 - transient upload not supported by controller
 - Bad NAND element •
 - SSD firmware damaged beyond repair
- Garbage collection / re-allocation is not ٠ changing flash content

The "Chip-Off" Recovery Process

Flash Memory Summit

- **Remove NAND**
 - Minimise heat during removal (or use milling) and re-balling ٠
 - Avoid damage to package / pads ٠
- Read NAND
 - Socket, pin-out (interface) ٠
 - Logical addressing scheme (page, block, plane, die)
 - Command set •
 - Use voltage control and read-retries (special features) ٠
 - **Error-correction**
- Extract (re-assemble logical data copy)
 - Deal with striping, scrambling, decryption, L2P mapping etc...
 - Use information within SA where possible / applicable •

NAND Cell Data Density (SLC, MLC, TLC and QLC)

MLC, TLC and QLC NAND – Error Correction (ECC)

BCH (Bose–Chaudhuri–Hocquenghem)

- hard-decision decoding with read-retry
- LDPC (Low-Density Parity Check)
 - supports soft-decision decoding with read-retry
- Adaptive LDPC
 - code changes throughout life of NAND
 - smaller (weaker) ECC when new
 - larger (stronger) ECC as NAND ages

BUT... Adoption of LDPC seems to be more to do with controller development roadmap than a requirement of 3D NAND due to current use of MLC!

3D NAND – New Challenges - Reading

-		-0	21	-	_	-		-	-	- 22	4	-		-	_	1
	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	00	ŏ	6		5	õ	2	6	ŏ	ŏ		6	õ	õ	ŏ	
	00	5				۲	5		ø		۲	۲	õ	6	ō	4
	00	10	0	0	۲	۲		1	-	۲	۲		0	۲	Q	
	00		9	Q,	2	2	6		2	2	-	2	2	2	2	T
9	20	S	9	2	2	2	5 L	le	2	E	2	2	2	2	X	
Э	20		X	26	2	H				-		2	-	-	ă	
2	õd				6	5	Q	27	-				2	5	ŏ	
1.	00		6				10		۲			۲	-	۲	õ	
	00	0	۰	۲	۲	۲	ŝ	<u>o</u> _	9	-	-		۲	-	0	11
	QQ	-	9		2	-	ک		•	1	2		-	9	0	A
	25	52	2	2	2	2	72,	2	2	귿	2	\mathbf{T}	2	X	×	12
	22		×	2	2	-	or		Z	č	3	6		5	ŏ	
r.	00	-	-		-	-			2				2	2	5	5
	00			6		-	9 e		٠	٠		-	ē	õ	õ	9
	00	r O	۲	0	۲	ø			9		0	0		0	0	
	00	2	2	9	2	2	2		2	2	-	9	2	00	0	1
	01	22		2	X	X	Jas.		2	2	1	2	X	X	×	
	20	A		Z	1	č	0	X	č	2	2	6	Z	1	č	L
T_	-		~	-	-	0	-		Z	-	-	-	-		-	
					1.		-	4	1,6	ł.				3	90	

- Custom (non-ONFI) pinout
- Vendor-unique signals
- Extended addressing modes
- Vendor-unique commands
- New set features parameters
- New read-retry thresholds

Ontrack[®]

3D NAND – New Challenges - Processing

Data randomisation pattern is XOR'ed with user data before storage in NAND to reduce the occurrence of bit patterns which can cause inter-cell interference

= cell programmed / erased with '1'

= victim cell, was programmed with '0' ...but reads closer to '1'

- Data randomisation pattern generated typically using LFSR (Linear-Feedback Shift Register)
- Polynomial and pattern distribution tailored to physical layout of NAND
- 3D NAND adds Z-axis

The Benefits of 3D NAND to Data Recovery

Low BER (Bit Error Rate)

- 3D NAND is mostly MLC
- Has a bigger cell size than 2D TLC
 - May change as cell size shrinks and 3D TLC is adopted but is good news for us right now!

3D

- · Low BER helps data recovery:-
 - · Requires less-intensive ECC which improves speed of processing
 - Fewer read-retries required, which improves chip imaging speed
 - Fewer uncorrectable pages, which simplifies mapping and increases quality of recovered data

Ontrack SSD Erasure Verification Service (EVS)

Purpose

Tests the real-world effectiveness of a data erasure / sanitization method on SSD (also HDD) for manufacturers, vendors and integrators (among others)

Procedure

- Write known byte patterns to all logical blocks (two pass, two different byte values)
- Run client's erase process, then analyse:-

Level I (Logical)

Read LBAs via SSD interface, look for known data pattern (also include hostprotected logical areas)

Level II (Physical)

In-depth examination of all SSD NAND flash content using "Chip-Off"

Flash Memory Summit 2018 Santa Clara, CA

Ontrack

- "Chip-Off" is needed for proper Erasure Verification on SSD and some SSD failure modes make this approach the only way to recover data
- Initially a steep learning curve to add support for 3D NAND as there are vendor-unique elements associated with reading and new challenges in processing
- However, **3D NAND is good news for Data Recovery!** The current generation of 3D NAND is MLC, so there are real benefits over 2D TLC NAND
- We enjoy working with NAND vendors, drive manufacturers and controller chip manufacturers and collaboration helps us deliver a better service to our mutual clients

Thank You!

Please visit us at booth #126

