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 Computing System’s  Challenge 

 RRAM: Memory/Storage Convergence 

 RRAM: Memory/Computing Convergence 

 Summary 

Outline 2 



Big Data comes 

Big Data 

Media 

Social 

Machine 

Historical 

 From 2013, data nearly doubles every two years 

 In 2025, it’s expected that the data volume will reach ~180 ZB 
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now 

Powerful and Energy Efficiency Computing to Process Big Data! 
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 Computing performance improved 1010 times in past 60 years. 

 Device: energy efficiency slow down due to power constraints at 22nm;  

 Architecture: CPU and memory was physically separated.  

 An increasing performance gap between CPU and memory, which is 

known as the memory wall. 

Computing challenge in Big Data era  

Bus 

CPU 

Memory 

Input Output 
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Processor 
<1 ns 

 

SRAM 
5 ns 

~ MB 

DRAM 
100 ns 
~ GB 

Flash 
20 μs 

~100GB 

Hard Drive 
1 ms 
~ TB 

5X 20X 2000X 50X 
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Volume Speed 

Memory hierarchy 

 Memory Hierarchy:  tradeoff  between speed and density,  bottleneck 

to limit the computing  performance. 

 Universe memory:  blurs distinction between memory (fast, volatile 

and low density) and storage (slow, non-volatile and high density). 

NVM play more important role in  future computing! 



M/C Convergence: 

 no data movement 

CPU 

Memory 

Storage 

CPU 

NVM 

NVM-

CPU 

M/S Convergence:  
less data movement 

Memory Hierarchy:  
more date movement 

 Near term: M/S convergence by new NVM, simplifying 

memory hierarchy, less data movement, high performance; 

 Long term: M/C convergence by integrating memory and 

computation in one device, “Memory Wall” problem can be 

solved.   

6 
NVM: a solution to future computing 



 Computing System’s  Challenge 

 RRAM: Memory/Storage Convergence 

 RRAM: Memory/Computing Convergence 

 Summary 

Outline 7 



RRAM: a promising candidate 

RRAM: Promising Emerging Memory Technology ! 
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1962 

First publication 

2008 

First array demonstration 

Elpida announces 

RRAM chip, aims 

to enter market 
Journal of Applied 

Physics, 1962 ,33:9 

Panasonic IEDM 2008  

2013 

History 

2015 
RRAM for 

embedded 

application  

2020 2025 

RRAM for 

standalone 

application 

Near future Future 

RRAM for 

computing 

Now 

IMECAS 

RRAM’s history and future 9 

Our group started the joint development of RRAM in 

 embedded  and stand-alone applications with industry from 2015. 



(1) W plug formation 

(2) Cell trench open 

(4) CMP to form cell 

(3) Deposit TMO/TE 

10 28 nm RRAM integration 

US Patent, 8735245 

One extra mask 

 RRAM built between CT and Metal 1, W as 

BE, TMO as switching layer and M1 as TE 

 Interfacial layer between TMO and TE:  
• Initial Resistance more uniform and sensitive 

to the thickness of Ti or Ta ; 

• Block TE migration at BEOL thermal process. 

PECVD, High T Q time, Ashing, alloy. More 

than 90 min annealing at 400oC . 
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Read@RT

Electrical test on the 1T1R array 11 

IEDM 2017, 36-39 

HRS and LRS distribution in 1Mb array by 

3V/100ns SET and -3V/100ns RESET pulse.  



3D X-point 3D V-RRAM 

RRAM: a good choice for 3D stacking  
12 

 Suitable for 3D integration；either in 3D X-point or BiCS 3D NAND 

like vertical array (VRRAM). 

 RRAM devices linear I-V in LRS, unselected cells in LRS, sneaking 

current could be generated.  

 A high performance nonlinear selector or self-selective RRAM cell. 



RRAM with switch- based selector RRAM with Diode  

 p-n type diodes,      

Schottky diodes, Hetero-

junction… 

Generally, applying to 

the unipolar RRAM 

rectifying ratio is 

defined as R-V/RV 

 

threshold switch  be  

as volatile switch 

applying to the unipolar 

or bipolar RRAM 

 rectifying ratio is 

defined as RV/2/RV 

applying to the unipolar or 

bipolar RRAM 

 rectifying ratio is defined 

as RV/2/RV 
Cu doped HfOx with non-
linearity >107, Jon>1MA/cm2 

  Hybrid selective layer 

and memory layer  

 Nonlinearity ratio is 

defined as 

I@Vread/Vread/2 

  The only choice for 3D 

Vertical RRAM. 

 

Top Electrode (TE) 

Memory layer (ML) 

Selective layer (ML) 
Bottom Electrode(BE) 

Self-Selective Cell  
Vrea

d 

Vread/2 

W/TiOx/Ni diode with self-
compliance to  integrate 
bipolar Cu/HfO2/Pt 

Nanoscle, 2013, 5:4785 

Pd/TaOx/Ta/Pd with 
non-linearity of 5×103 

       Nanoscle, 2015, 7:4964 

Self-rectifying RRAM: 
Pt/WO3/a-Si/Cu 
Self-rectifying Au/ZrO2:nc-
Au/n+-Si 
 

JAP, 2009, 106:073724; IEEE EDL, 

2010, 31:344; IEEE EDL, 2013, 34:229  

Mater insulator transition 
(MIT) 
Threshold switch (TS) 

Resistive switch: 

Mixed ionic electronic (MIEC) 

Complementary resistive 
switch structure   

TS layer (Doped HfO )

BE (Cu)

Reduce off-state 

leakage

TE (Pt)

Tunneling layer (HfO )
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IEDM 2015, 245-248 

Solution for the sneak current issues  
13 



 Cu doped HfOx RRAM fabricated in 

130nm BEOL. TS observed after 

annealing 30min at 1250C. 

 Introducing the 2nd tunneling layer,  

the leakage current  was reduced by 5 

orders. 
IEDM 2015, 245-248 
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10-6 A 

Ideal Selector 

 Non-linearity >107, Jon>1MA/cm2, Leakage  current: pA level. 

 Asymmetrical I-V curve might be resulted from the barrier height 

between top electrode and the tunneling layer. 
IEDM 2015, 245-248 

Bilayer Selector Device 
15 



Consecutive DC switching cycles 

Distribution of 
on and off states 

current 
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 Endurance: 1010, high 

temperature without 

degradation. 

 1 kb selector array with 

1T-1S: High nonlinearity, 

High on-current density, 

tight distributions on and 

off current. 

 Switching voltage 

variation, limited voltage 

window for reading. 
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(c) (d)

 Good uniform and larger  R window , Lower nonlinear and  on-current. 

 Trapezoidal band shape: high nonlinear and on-current  compared to uniform or 

crested barrier. 

 O- gradually changed TaOx layer: in surface, Ta was fully oxidative, oxygen 

component decreased as depth increased.  

Interface type selector 

TaOx

Ru

W 5 nm

A

B
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     standard deviation is negligible, showing excellent uniformity. 

Device performance 
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Endurance and High T Operation 
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 Endurance as high as 1010 has been achieved. 

 High temperature without degradation is allowed. 
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 104 nonlinearity was achieved in 

1S1R with excellent uniformity. 

 The read region is from 1.2V to 3.8V. 

 The read region with nonlinearity 

higher than 103 is from 1.2V to 2.4V. 
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Self-selective Cell (SSC) for VRRAM 

Memory layer 

Selective layer 

Electrode 
BL 

 In 3D VRRAM, intermediate electrode is not allowed, memory cells 

on the same BL will be shorted, connecting with the same selector. 

 The self-selective memory cell with rectifying or build-in nonlinearity 

is the only choice for 3D VRRAM. 

BL BL 

WLn+

1 

WLn 

Self-selective cell 

WLn+

2 

WLn+

3 

Holes 
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3D VRRAM Integration of SSC  
(a) (b) (c) (d)

BL
BL

BL
BL

WL 4

WL 3

WL 2

WL 1

(e) (f) (g)

(h)

Step 1 Step 2 Step 3

Inline check 1 Inline check 2 Inline check 3

4x8x32

(i)
WL2-0~WL2-7 

WL1-0~WL1-7 

IEDM 2015, 245-248 

 HfO2/CuGeS bi-layer SSC 

with TE deposited on 

sidewall by sputtering. 

 Each horizontal WL was 

opened by selective etching. 

 Staircase WL contacts on 

each layer are formed.  

4 layer 8×32 

 3D VRRAM array 
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 Endurance of  SSC with 107.  

 Retention of  SSC for  10000s. 

 Each layer devices exhibit stable 

and uniform characteristics. 
IEDM 2015, 245-248 
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8 layer integration of 3D VRRAM 

IEDM 2017, 48-51 

 An 8-layer integration of 3D VRRAM  achieved.  

 High uniformity with on/off ratio (≈100 times) and 100x 

nonlinearity. 
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 Computing System’s  Challenge 

 RRAM: Memory/Storage Convergence 

 RRAM: Memory/Computing Convergence 

 Summary 

Outline 26 



27 

 In memory computing, to eliminate the energy-intensive and time-

consuming data movement. 

 Focused on identifying novel logic gate concepts with lower energy and 

area consumption. 

 RRAM’s advantages, as direct access by interconnect lines, capability to 

electrically reconfigure device, and nanoscale miniaturization. 

Source: Nat, Borghetti J 
Source: Nat. Nanotech, Tuma T 

Digital Brain inspired 

Ways of Memory/computing convergence 

Source: EDL, Gao Li 

Analog 



V-R logic gate 

 A considerable saving of static power 

 Low requirement of device characteristics  

• Input (voltage) and output (resistance) 

signals are physically different. Additional 

hardware burden, time and power 

dissipation will be cost. 

 Only physical variable-resistance. 

 gate cascading can be achieved 

easily 

• Devices with high uniform 

characteristics are necessary 

Source: Nanotech, E. Linn 

Source: Adv. Mater, P. Huang 

RRAM-based logic unit 

R-R logic gate 
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Cu/α-Si/α-C/Pt 

Cu/α-Si/α-C/Pt shows good endurance, retention and uniformity. 
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> 10 years

High uniformity of RRAM 
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NAND logic gate 

 Based on principle of 

resistance interaction, 

NAND operation was 

realized.  

 Device A and B hold input 

signal and device R store 

operation result.  

 NAND is basic operation of 

all the Boolean logic, other 

logics can achieve by 

proper cascading.  

30 
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 Resistance states of RRAM for representation of logic “0” and “1”; 

 Via cascade of logic units, 16 Boolean logic can be implemented; 

 10 logic can be accomplished in 1 step. 

Implementation of 16 Boolean logic 
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Implementation of NXOR is the most complex one, it needs 5 

devices in 3 steps. 

Implementation of 16 Boolean logic 
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 1 bit full adder needs 5 devices and 1 reference resistor, 

operation is finished in 6 steps.  

Realization of 1 bit full adder 

Unpublished 
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Spiking neural networks 

Neurons 

Synapses 

Brain-inspired computing with RRAM 

 The human neural system is inherently memory/computation convergence.  

 Basic elements: neurons(receives, processes, stores and transmits information 

via its synapses), and synapses (connections between neurons). 

 In spiking neural networks (SNN), the neurons integrate inputs from neurons 

in the previous layer and fires when a threshold value is reached, while 

synapses are connections between neurons. 
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Synaptic functions 
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Artificial neuron circuit 

Threshold 

switching 

Operating principle and similarity to bio-neuron 

Neuron design 

 According to the integration and fire model, a simply neuron 

circuit is constructed with 1 TSM, 1 capacitor and 1 resistor. 
IEEE EDL, 2018, 39:308 
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Functions of artificial neuron 

Capacitor 

charging/ 

discharging 

Output 

spike 

Spiking under 

different input 

intensities 

The TSM neuron successfully achieved four key behaviors of bio-neurons: 

the all-or-nothing spiking, threshold-driven spiking, a refractory period, and 

a strength-modulated frequency response. 
IEEE EDL, 2018, 39:308 
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Digit recognition simulation 

 Digit recognition 

simulation with TSM 

neurons demo. on an 

array with 1 input layer 

(30 synapses) and 1 

output layer (10 neurons); 

 Lateral inhibition is 

implemented with the 

winner-take-all rule. 

IEEE EDL, 2018, 39:308 
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 Computing System’s  Challenge 

 RRAM: Memory/Storage Convergence 

 RRAM: Memory/Computing Convergence 

 Summary 

Outline 39 



Summary 

 Computing technology improved 1010times in past 60 years,  face big 

challenge: 

 Moore law slow-down ( trade off between performance and power density),  

 Limitation of traditional memories (fast, high density, cheap, non-volatile) 

 Von Neumann architecture( performance gap between memory and CPU) 

 M/S convergence to reduce memory hierarchy and M/C convergence 

to realize brain-like high efficiency computing. 

 RRAM as a new Memory technology, has already entered niche 

market for embedded application. 

 Highly promising, significant efforts are still needed to address the 

interdisciplinary challenges of device optimization, circuit design, 

and system management. 
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