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“Don’t worry, we process this
in the background”
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Introduction
• Last year we introduced hyperscaler challenges with read tail latencies and 

offered a solution using IO Isolation

• This year, this presentation will expand the concept with what we are coining 
“Hyperscale Mean Latency”

• Technologies such as QLC intrinsically have higher latency and this presentation 
will demonstrate how Hyperscale Mean Latency is best mitigated with IO 
Isolation

• We demonstrate using NVMe™ IO Determinism solution how to mitigate internal 
operations such as garbage collection and background data refresh.
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From Last Year – Read latency tails
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Simulation data: As with any test, the results and outcomes herein should not be interpreted as a guarantee 
or warranty of similar results. Results may vary, depending on the circumstances and conditions.



From last year: NVM set isolation 
concept
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• Classic SSD architecture uses “bands” of devices on every channel to maximize bandwidth. 
Maintenance is also on every die on every channel

• New SSD array architecture creates independent NVM Sets
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From last year’s POC Set Isolation Result
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~>50x Tail Latency Improvement!

Final FW Optimizations
Lab data: As with any test, the results and outcomes herein should not be interpreted as a guarantee 

or warranty of similar results. Results may vary, depending on the circumstances and conditions.



Further justification for IO Isolation in 
hyperscale environments

New Concept: Hyperscale Mean Latency (HML)
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From last year…
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“In practice, a single user request may result in 
thousands of subqueries, with a critical path that 
is dozens of subqueries long.”

“The fork/join structure of subqueries causes latency 
outliers to have a disproportionate effect on total 
latency, and the large number of subqueries would 
cause slowdowns or unavailability to quickly 
propagate…”

Challenges to Adopting Stronger Consistency at Scale  
- Ajoux et. Al., (Facebook & USC), 2015

https://www.usenix.org/system/files/conference/hotos1
5/hotos15-paper-ajoux.pdf

“Topology:  Thousands=Hundreds x Dozens”



Hyperscale Fork/Join Query Topology

• M parallel drive reads 
per Fork/Join

• Results compiled @J
• Fork/Join J-latency 

determined by worst 
case latency
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Content 
Updates

Host Reads

Effects of Content Updates and Internal 
Refresh on Fork/Join Latencies

• While the host is doing time 
critical fork/join queries, 
each drive element is 
subject to
• Host initiated writes to update 

content.
• Drive initiated garbage 

collection and internal refresh
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Hyperscale Mean Latency

• Attempting to do fork/join 
queries in an environment with 
both content updates (writes) 
along with internal garbage 
collection and refresh amplify 
the mean latencies as seen 
from the perspective of the 
hyperscaler
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Topology: 
200x1 
drives

At scale a singe 
drive tail latency 
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hyperscale mean 

latency

Content 
Updates

Host Reads

Simulation data:  As with any test, the results and outcomes herein should not be interpreted as a guarantee or warranty of 
similar results. Results may vary, depending on the circumstances and conditions.
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Cascade Fork/Join Query Topology

• Cascade of N Fork/Joins
• M parallel drive reads per 

Fork/Join
• Fork/Join read latency determined 

by Tall Pole
• ∴Cascade latency is sum of Tall 

Poles
• For the rest of this paper we’ll 

assume MxN=200x24 as example
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Tail Latencies: Real 
System Impact!
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• Even 1% write level impacts 
hyperscale mean read latency 
4x!

• A classical ~70/30 write profile 
can impact mean read 
latencies by 10x

• Best system latency is when 
read set is quiet except host 
reads

• Solution: IO Isolation

~4x mean latency  
for 1% writes
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N

~10x mean latency for 30% 
writes  

Simulation data: As with any test, the results and outcomes herein should not be interpreted as a guarantee or warranty of 
similar results. Results may vary, depending on the circumstances and conditions.
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Background Data Refresh (BDR)

• BDR continuously reads mapped 
content.

• Creates read-on-read collisions.
• Relocates weak content.

• Creates read-on-write/erase 
collisions.

• Data shows limited mean impact at a 
single drive level.  This is what 
justifies an SSD designer to think its 
OK to call it “Background Data 
Refresh”.  But…
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Per-Drive (no relocations)

Lab Data: As with any test, the results and outcomes herein should not be interpreted as a guarantee or warranty of similar 
results. Results may vary, depending on the circumstances and conditions.
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BDR Impact at Hyperscale Level 
Cannot be Ignored
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Per-Drive Per-Fork/Join
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Lab and Simulation Data: As with any test, the results and outcomes herein should not be interpreted as a guarantee or 
warranty of similar results. Results may vary, depending on the circumstances and conditions.
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IOD BDR Recommendation

• Suspend BDR scan during DTWIN.
• Requires accelerated BDR scan rate during 

NDWIN intervals to meet coverage targets
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What about QLC and IOD?

• Assumptions (QLC vs. TLC):
• Bigger blocks
• Reads 2x-3x slower
• Programs 4x-5x slower
• Erases and suspends “about” the same

Santa Clara, CA
August 2018 17

Predictions herein are for informational purposes only and should not be interpreted as a guarantee or 
warranty of similar results. Results may vary, depending on the circumstances and conditions.



TLC vs. QLC Per-Drive 
Read Latencies
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Simulation Data: As with any test, the results and outcomes herein should not be interpreted as a guarantee or warranty of 
similar results. Results may vary, depending on the circumstances and conditions.
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Significantly higher 
QLC program traffic 
increases suspend 
probabilities (~5x)

Increased QLC 
program time, bigger 
blocks mask erases.



TLC vs QLC in a Hyperscale Environment
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2x-3x

Simulation Data: As with any test, the results and outcomes herein should not be interpreted as a guarantee or warranty of 
similar results. Results may vary, depending on the circumstances and conditions.

TLC vs. QLC 'Full-Tree‘ 200x24 Fork/Join Read Latency vs. Background Write Level (uS)
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TLC vs QLC in a Hyperscale Environment
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similar results. Results may vary, depending on the circumstances and conditions.

TLC vs. QLC 'Full-Tree' Fork/Join Read Latency vs. Background Write Level (uS)
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TLC: ~6x

QLC: ~18x

Where as QLC without 
isolation with a similar 
workload extends the 
mean latency by 18x vs 
utilizing isolation

TLC with a non isolated
~70/30 workload 
increases 200x24 mean 
latencies by ~6x vs IO 
Isolation



Summary

• Last year we demonstrated array isolation offering ~50x latency tail 
improvements

• The concept of Hyperscale Mean Latency (HML) is explored where low 
probability drive read tail latencies turn into mean latency impacts for 
hyperscalers given the breadth and depth of fork/join operations.

• Applying HML concepts to a TLC SSD tells us 
• Even 1% write rates without IOD impacts HML by 4x
• A classical 70/30 workload without can impact HML by ~10x
• NVMe™ IOD is an idea solution to address HML

• Background data refresh can meaningful impact HML and is recommended to 
utilize determinism modes of NVMe™ to mitigate

• QLC’s longer program latencies can induce further HML latencies and values IO 
Determinism concepts even more than TLC
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Please stop by booth #307 to see the latest 
offerings and technology demonstrations from 

Toshiba Memory America

NVMe is a trademark of NVM Express, Inc.  Information, including product pricing and specifications, content of services, and contact 
information is current and believed to be accurate on the date of the publication, but is subject to change without prior notice. Technical 

and application information contained here is subject to the most recent applicable Toshiba product specifications. ©2018 Toshiba 
Memory America, Inc.
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