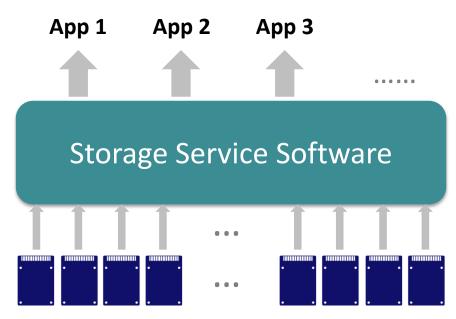




1


### How Open Channel SSD Benefit Datacenter and Enterprise Applications

#### **Rick Huang**

SSD Product Marketing Manager, SiliconMotion Inc.



### **Shared Storage System**



**Shared Storage Pool** 





## **Datacenter and Enterprise Storage**

- Datacenter (Cloud Service Provider, CSP)
  - Requirements changes rapidly and varies with applications
  - Internal engineering capable for optimization and maintenance
- Conventional Enterprise (or SME)
  - Prefer an integrated system solution of HW alliance and SW
  - Ease purchase and maintenance complexity





## **Considerations for Next-gen Storage**

- Various kinds of application on the shared devices
  - Required workload specific optimization
- Quick adoption of new generation NAND
  - Reduced complexity and efforts for qualification and deployment
- Diversified supply and vendors
  - Simplified device design and efficient/reliable NAND enablement





## **Open Channel SSD (OC SSD)**

OC SSD provides the solution to address the considerations

- A differentiated SSD architecture host and device
  - Added "interface" commands leveraging NVMe protocol
- Another approach to optimize storage performance
  - From system level, not only at device
  - Shift more data management to host
  - Ease design requirement of device

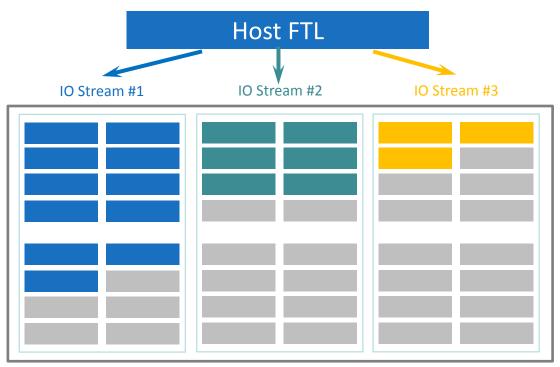




### **OC SSD – Roles between Host/Device**

### Application Host Data Placement Open Channel SSD Interface **Device/SSD** Media Management Media

Flash Memory Summit 2018 Santa Clara, CA


### Data placement -> near application

- Host software optimizes data placement
- Reliability -> near media
  - SSD takes care of media management
- Expose SSD internal parallelism to host
  - Efficient data placement and IO scheduling



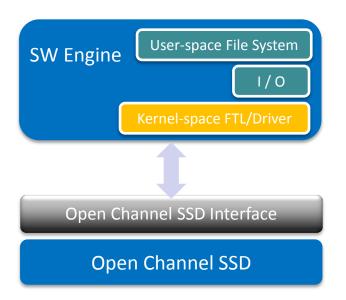


### **OC SSD – Data Path Control**



**Physical Blocks** 

Manage data streams

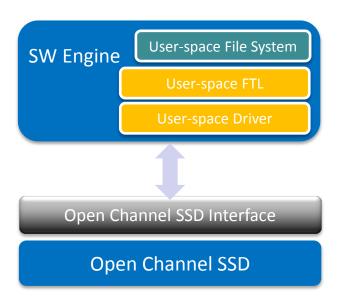

Control entire data path down to physical

- IO isolation
- Predictable latency





### **OC SSD Platform – Legacy Usage**




- FTL/Driver at Kernel-space
  - Easy adoption as block device
- Smooth transition for legacy usage





### **OC SSD Platform – Advanced Usage**

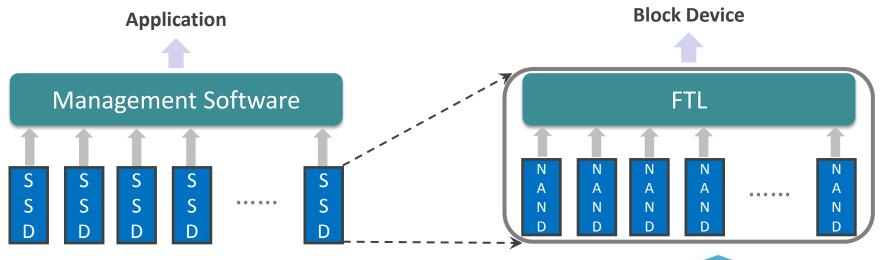


FTL/Driver at user-space

- FTL as a component of SW application
- Good for maintenance

#### To reduce redundant mapping

- Combine GC/WL to reduce WA
- E.g. object storage (KV)






## **OC SSD Platform – Further Optimization**

- Management SW for SSD devices
- Another "FTL" on top of block devices

- Management SW inside SSD
- An FTL to manage NAND devices





## **Device – Simplified but Flexible**

Device focus on media management for reliability

- Ease and simplify some controller requirement
- CPU / Memory / Power
- HW/FW design flexible for differentiated customization
  - Different OC SSD interfaces
  - Customized FTL partitions between host and device

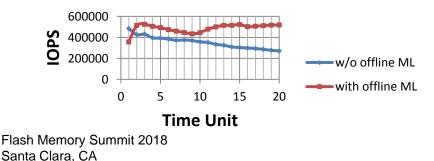




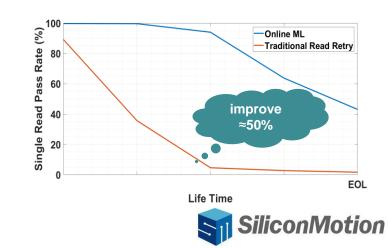
# **Device – Diversified NAND Enablement**

Deep knowledge on NAND characteristics for reliability
Intelligent FW algorithm for optimized device BOM cost

- DRAM-less
- Latest 3D TLC and QLC
- Efficient and reliable enablement for diversified NANDs
  - Stronger ECC, e.g. 4KB LDPC
  - Off-line / Online Machine Learning algorithm







## **Device – Offline/Online ML Error Recovery**

- Practical data collection to build up database NAND characteristic
- Offline develop/adjust algorithm with modeling and updated data

#### **Performance Comparison**



- Online training to optimize with real-time user scenario
- Increase read performance and improve QoS





## **Device – Approaching Error-Free**

- Bit errors, read disturbance, retention, program failure, ...
- Device to record error statistics, and address errors as much as possible
  - Comprehensive error avoidance/recovery schemes
  - The more device to address, the less host to take care






OC SSD addresses the needs of datacenter and enterprise storage

- Optimization per application, quick NAND enablement, diversified supply
- OC SSD architecture provides the flexibility
  - Host to optimize data placement for IO isolation and latency
    - Combined GC and further optimization for software defined storage
  - Device to deal with media reliability to approach error-free
    - Simplified and diversified for optimized device BOM cost





### Visit SMI Booth #413



Dual-mode SSD – NVMe and OC SSD

Supports several OC SSDs

- OC SSD V1.2/V2.0 spec
- Customized interfaces for  $\boldsymbol{A}^*$  and  $\boldsymbol{B}^*$
- Project Denali pre-standard
- Enabling latest and coming 3D TLC/QLC







## **Thank You**

#### http://www.siliconmotion.com