

Bring Your SSD Testing Up to Date

Tutorial – SNIA Performance Test Specifications

PTS 2.0.1 for Solid State Storage Devices RWSW PTS 1.0.7 for Datacenter Storage

Eden Kim

Calypso Systems, Inc. Chair, SNIA Solid State Storage Technical Working Group (SSS TWG)

Flash Memory Summit

Agenda

Introdu	iction	1:00 – 1:15	
Part 1:	PTS v 2.0.1 - Updates Overview Updated Tests & Metrics	1:15 – 2:00	
Break		2:00 – 2:15	
Part 2:	RWSW PTS v 1.0.7 - Capture & Analysis Overview - Real World Workloads Capture – IO Captures & Reference Workloads Analysis – IO Stream Map & LBA Range Hit Map	2:15 – 3:30	
Break		3:30 - 3:45	
Part 3:	RWSW PTS 1.0.7 - Test	3:45 – 4:45	
	In-situ Target Server Self-Test Replay Native Multi-WSAT Individual Streams WSAT RWSW DIRTH		
Questi	ons	4:45 - 5:00	
Flash Memory Summit 2018 Santa Clara, CA	3		

Introduction

Two New SNIA SSS PTS Technical Positions

- "PTS" Performance Test Specifications for SSDs & Datacenter Storage
- PTS v 2.0.1 Feb. 2018 for SSDs
- RWSW PTS v 1.0.7 May 2018 for Datacenter Storage

PTS v 2.0.1 – for Solid State Storage Devices

- Focus is on the pre-conditioning of NAND Flash to Steady State
- Workloads are corner case stress tests and synthetic emulations of applications
- Tests are for Comparative Performance benchmarking

✤ RWSW PTS 1.0.7 – for Datacenter Storage

- Focus is on the Capture, Analysis and Test of Real World Workloads
- Real World Workloads are Derived from IO Trace Captures of User Applications
- Tests are for the Analysis, Qualification & Validation of Datacenter Storage

	SNIA Advancing storage &
	information technology
Pe	erformance Test Specification (PTS)
	Version 2.0.1
ABSTRACT: Th methodology, te and reliable con factors, protoco	is specification describes a solid state storage device-level performance test st suite and reporting format intended to provide an accurate, repeatable nparison of IANIX Dischaed solid state storage products of various form is and indendes used in Client and Enterprise applications.
This document I methodologies a and are approprint http://www.snia.	has been released and approved by the SNIA. The SNIA believes that the ideas, and technologies described in this document accurately represent the SNIA goals raise for widespread distribution. Suggestions for revisions should be directed to org/feedback/.
	SNIA Technical Position
	February 5, 2018
	www.snia.org/pts

Part 1: PTS v 2.0.1 for SSDs - Overview

- Consolidates PTS Client v1.2 and Enterprise v1.1 into 1 doc
- Updates IOPS Test to 3 Steady State Variables
- Adds WSAT, DIRTH and HIR to Client Tests
- Defines 6 synthetic workloads for WSAT & DIRTH:
 - a. Meta Data & Journaling: SEQ 0.5K RW
 - b. Write Intensive: RND 4K W
 - c. Read Intensive: RND 4K R
 - d. Database OLTP: RND 8K RW65
 - e. VOD: SEQ 128K RW90
 - f. Composite Block Size (CBS): JEDEC 219(a) Composite workload
- Adds Optional Secondary Metrics:
 - a. Power consumption; IOPS/Watt
 - b. Average/Maximum RTs and 5 9s Response Time Quality of Service
 - c. CPU System Usage %; CPU IO Wait

PTS v2.0.1 – Tests & Test Flows

Test Family	Tests	Tests Purpose Workload Type		Pre-condition	Steady State
SNIA Basic	IOPS TP 128K, TP 1024K LAT	IO Rate Bandwidth (BW) Bandwidth (BW) Single IO Response Time (RT)	Mixed BS Loop	PURGE, WIPC, WDPC	20/10 5 Round Post Test Inspection
Saturation	WSAT	FOB IO, BW & RT Saturation	Single Access Patterns Composite BS Mix	PURGE, WDPC	Time, TGBW, Drive Fills Rounds with BTW
Optimized	DIRTH	IO, BW & RT Saturation Quality of Service Performance over Range of Users	Single Access Patterns Composite BS Mix	PURGE, WIPC, WDPC	Rounds with BTW
Sustained	XSR HIR	Garbage Collection Recovery Garbage Collection Recovery	Alternating Segments Alternating Segments	PURGE, WDPC PURGE, WDPC	Time Rounds with BTW

Tests have Different Workload Types

- Mixed Block Size Loops
- Single Access Pattern
- Composite BS Mix
- Alternating Segments

Flash Memory Summit 2018 Santa Clara, CA

Tests use different PC

- WIPC & WDPC
 - WDPC only

Tests have Different SS Criteria

- 20/10 % Round Formula
- 5 Round with Between Round Writes
- 25 Rounds w/ Post Test Inspection
- Time, TGBW, Drive Fills

Test	Purpose	Workload Type	Workload Access Patterns	Demand Intensity
IOPS	IO Rate	Mixed BS Loop 56 RW elements	RW: 100R, 95:05, 65:35; 50:50; 35:65; 05:95; 100W BS: 1024K; 128K; 64K; 32K; 16K; 8K; 4K; 0.5K	Ent: T4Q32 Client: T2Q16
TP 128K; TP 1024K	IO, BW & RT Saturation	Single Access Patterns 2 RW elements	RW: 100R; 100W BS: [SEQ 128K; SEQ 1024K]	T1Q32
LAT	IO, BW & RT Quality of Service	Single Access Patterns 9 RW elements	RW: 100R; 65:35 RW; 100W BS: 8K; 4K; 0.5K	T1Q1
WSAT	FOB IO, BW & RT Saturation	Single Access Patterns Composite Block Size	RND 4K R; RND 4K W; RND 8K RW65 SEQ 128K RW90; SEQ 0.5K RW50 CBS 14 BS Composite (JEDEC 219(a))	Ent RND: T4Q32 Client RND: T2Q16 SEQ: T1Q32
DIRTH	IO, BW & RT Saturation RT QoS	Single Access Patterns Composite Block Size	RND 4K R; RND 4K W; RND 8K RW65 SEQ 128K RW90; SEQ 0.5K RW50 CBS 14 BS Composite (JEDEC 219(a))	Ent RND: T4Q32 Client RND: T2Q16
XSR	RT & BW Recovery from Super Saturation	Alternating Segments	SEQ 1024KW; RND 8K W; SEQ 1024K W	T1Q32; T4Q32; T1Q32
HIR	RT & BW Recovery Effects of Host Idles	RND 4K W Varying Host Idles	RND 4K W; 0,5,10,15,15 & 50 sec Host Idles	Ent: T4Q32 Client: T2Q16

PTS v2.0.1 Basic Test Process – PURGE

Basic Test Process:

1. PURGE

- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

Flash Memory Summit 2018 Santa Clara, CA

1. PURGE¹

- Return the Device to a state as if no writes have occurred by:
 - a) ATA: SECURITY ERASE
 - b) SCSI: FORMAT UNIT
 - c) NVMe: FORMAT namespace or
 - d) Vendor Specific Command / Methods
- Device PURGE creates a known and repeatable test starting point and facilitates a clear demonstration of the Steady State convergence behavior
- PURGE is a Required PTS 2.0.1 test step

¹ PTS 2.0.1 – p 21

Basic Test Process: 1. PURGE Workload Independent 2. Pre-conditioning Workload Dependent Pre-3. conditioning Types of Workloads 4. **Test Settings** 5. Steady State 6. Determination Report Data from Steady 7. State Window

Flash Memory Summit 2018 Santa Clara, CA

PTS v2.0.1 – Basic Test Process: WIPC

2. Workload Independent Pre-conditioning (WIPC)²

- Apply a workload to facilitate convergence to Steady State
 - a) Write twice the stated User Capacity
 - b) Apply SEQ 128K W at T1 Q32 or
 - c) Apply SEQ 1024K W at T1 Q32
 - d) WIPC is 'independent' of the workload of interest ('dependent')
- WIPC is applied to facilitate convergence to Steady State by organizing LBA tables prior to application of WDPC
- NOTE: WIPC and/or WDPC by themselves do not put an SSD into a Steady State but prepares and applies the workload of interest for calculation of the Steady State determination criteria

² PTS 2.0.1 – p 17

Basic Test Process:						
1.	PURGE					
2.	Workload Independent Pre-conditioning					
3.	Workload Dependent Pre- conditioning					
4.	Types of Workloads					
5.	Test Settings					
6.	Steady State Determination					
7.	Report Data from Steady State Window					

PTS v2.0.1 – Basic Test Process: WDPC

- 3. Workload Dependent Pre-conditioning (WIPC)³
- Apply the Workload of Interest until convergence to Steady State
- WDPC applies the Workload of Interest for calculation of the Steady State determination criteria
- Steady State determination criteria depend on the type of workload

Flash Memory Summit 2018 Santa Clara, CA ³ PTS 2.0.1 – p 17

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

PTS v2.0.1 – Types of Workloads

- There are three types of PTS 2.0.1 WDPC Workloads:⁴
 - a) Mixed Block Size Loop (IOPS, TP, LAT)
 - b) Single Access Pattern (WSAT, DIRTH, XSR, HIR)
 - c) Fixed Composite (CBW WSAT, CBW DIRTH)

⁴ PTS 2.0.1 – p 22

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

Mixed Block Size Loops – Nested RW & BS loops

- IOPS Test: 56 one minute RW/BS mix elements
 - a) (8) Read Write Mixes: 100% R, 95:05, 65:35, 50:50, 35:65, 05:95, 100% W
 - b) (7) Block Sizes: 1024K, 128K, 64K, 32K, 16K, 8K, 4K, 0.5K
- TP (Throughput) Test: 2 one minute RW/BS mix elements
 - a) (2) Read Write Mixes: 100% R, 100% W
 - b) (1) Block Size: [1024K TP test, 128K TP Test]
- ✤ LAT (Latency) Test: 9 one minute RW/BS mix elements
 - a) (3) Read Write Mixes: 100% R, 65:35 RW,100% W
 - b) (3) Block Sizes: 8K, 4K, 0.5K

b)

Bas	ic Test Process:
1.	PURGE
2.	Workload Independent Pre-conditioning
3.	Workload Dependent Pre- conditioning
4.	Types of Workloads
5.	Test Settings
6.	Steady State Determination
7.	Report Data from Steady State Window

- ✤ IOPS Test: One Round = 56 one minute RW/BS⁵
 - a) (8) Read Write Mixes: 100% R, 95:05, 65:35, 50:50, 35:65, 05:95, 100% W
 - (7) Block Sizes: 1024K, 128K, 64K, 32K, 16K, 8K, 4K, 0.5K

Flash Memory Summit 2018 Santa Clara, CA

⁵ PTS 2.0.1 – p 28 12

b)

TP (Throughput) Test: One Round = 2 one minute RW/BS⁶

- a) (2) Read Write Mixes: 100% R, 100% W
 - (1) Block Size: [1024K TP test, 128K TP Test]

Flash Memory Summit 2018 Santa Clara, CA

⁶ PTS 2.0.1 – p 37 13

- ✤ LAT (Latency) Test: One Round = 9 one minute RW/BS⁷
 - a) (3) Read Write Mixes: 100% R, 65:35 RW,100% W
 - b) (3) Block Sizes: 8K, 4K, 0.5K

Flash Memory Summit 2018 Santa Clara, CA

⁷ PTS 2.0.1 – p 44 14

PTS v2.0.1 – Types of Workloads: Single Access Pattern

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window
- Flash Memory Summit 2018 Santa Clara, CA

- Saturation⁸ & DIRTH:⁹ Single Access Pattern
 - a) Journal/Metadata: SEQ 0.5K R/W
 - b) Write Intensive: RND 4K W
 - c) Read Intensive: RND 4K R
 - d) Mixed/OLTP: RND 8K RW65
 - e) VOD: SEQ 128K RW90

PTS v2.0.1 – Types of Workloads: Single Access Pattern

Basic Test Process: 1. PURGE 2. Workload Independent Pre-conditioning Workload Dependent Pre-3. conditioning Types of Workloads 4. **Test Settings** 5. Steady State 6. Determination 7. Report Data from Steady State Window

Flash Memory Summit 2018 Santa Clara, CA

Host Idle Recovery:¹⁰ Single Access Pattern RND 4K W

¹⁰ PTS 2.0.1 – p 56 16

PTS v2.0.1 – Types of Workloads: Alternating Segment

Basic Test Process:						
1.	PURGE					
2.	Workload Independent Pre-conditioning					
3.	Workload Dependent Pre- conditioning					
4.	Types of Workloads					
5.	Test Settings					
6.	Steady State Determination					
7.	Report Data from Steady State Window					

Flash Memory Summit 2018 Santa Clara, CA XSR (Cross Stimulus Recovery):¹¹ Alternating Segments

SEQ 1024K W / RND 8K W / SEQ 1024K W

¹¹ PTS 2.0.1 – p 63 17

PTS v2.0.1 – Types of Workloads: Fixed Composite Workloads

Basic Test Process: PURGE Workload Independent Pre-conditioning Workload Dependent Preconditioning Types of Workloads

- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

- Saturation¹² & DIRTH¹³: Composite Block Size JEDEC 219(a)
- Composite of 12 different RND Write Block Sizes

Block Size	Percent	Block Size	Percent		
0.5K	4%	3.5K	1%		
1.0K	1%	4.0K	67%		
1.5K	1.5K 1%		10%		
2.0K	1%	16.0K	7%		
2.5K	2.5K 1%		3%		
3.0K	1%	64.0K	3%		

Use of Restricted LBA Ranges

Restricted LBA Range Zones									
LBA Group A	50% of the IOs	To the first 5% LBAs							
LBA Group B	30% of the IOs	To the next 15% LBAs							
LBA Group C	20% of the IOs	To the remaining 20% LBAs							

Flash Memory Summit 2018 Santa Clara, CA

^{12,13} PTS 2.0.1 – p 50,67 18

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

PTS v2.0.1 – Basic Test Process: Test Settings

- Test Settings are set forth for Enterprise (Ent) and Client tests
- Test Settings = Required or User Choice. Must be Disclosed
- Common Test Settings include:
 - a) LBA Active Range: Ent = AR100; Client = AR75
 - b) Volatile Write Cache: Ent = WCD; Client = WCE
 - c) Binary Data Pattern: RND; Repeating; Binary File
- TC/QD Setting (Demand Intensity) for Specific Tests include:
 - a) RND access workloads (e.g. IOPS, WSAT, HIR): Ent = T4Q32, Client = T2Q16
 - b) SEQ access workloads (e.g. TP, XSR): T1Q32
 - c) Single IO Response Time Measurement (e.g. LAT): T1Q1
 - d) IO & RT Saturation (e.g. DIRTH): Outstanding IO range from T1Q1 to T32Q32

PTS v2.0.1 – Steady State Determination Methods

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

Flash Memory Summit 2018 Santa Clara, CA

- 1. 20% Data Excursion/10% Slope 5 Round Formula¹⁴
- 2. 25 Round / Post Process Inspection¹⁵
- 3. 5 Round / 30 min Between Round Writes (BTW)¹⁶
- 4. Pseudo Steady State¹⁷
 - a) Time
 - b) Total GB Written
 - c) Drive Fills
- ✤ All Reported Data Must from the 5 Round SS Range

^{14,15,16,17} PTS 2.0.1 - p 24,24,50,50

Steady State: IOPS Test – Mixed Loop BS; 5 Round 20/10 SS

PTS v2.0.1 – "20/10" 5 Round Steady State Determination

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

Flash Memory Summit 2018 Santa Clara, CA

- "20/10" 5 Round Mixed Loop Steady State Determination
- (3) IOPS Steady State (SS) Determination Variables:¹⁸
 - a) RND 4K W
 - b) RND 64K RW65
 - c) RND 1024K RW100
- Steady State Formula
 - a) Five Consecutive Rounds
 - b) 20% Data Excursion, 10% Slope Best Linear Fit Line
- All SS Variables Must be within 5 Round Range
- All Reported Data Must come from the 5 Round SS Range

¹⁸ PTS 2.0.1 – p 28 22

PTS v2.0.1 – IOPS Mixed BS Loop SS Determination – SS Rounds 2-6

Basic Test Process:

- 1. PURGE
- 2. Workload Independent Pre-conditioning
- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

- Single Access Pattern "5 Round/30 Min BTW" SS Determination
- ✤ 1 Min Rounds with 30 Min Between Round Writes (BTW):
 - a) 1 Min Measurement Rounds
 - b) 30 Min Between Round Writes
 - c) Run Rounds until 5 Round "20/10" SS Determination is Met
- Single Access Pattern SS can be used for:
 - a) DIRTH (Demand Intensity Response Time Histogram)
 - b) HIR (Host Idle Recovery)
 - c) WSAT (Write Saturation)
- All Reported Data Must come from the 5 Round SS Range

PTS v2.0.1 – Single Access Pattern Steady State Determination 16 (1) Min Rounds separated by 30 Min Between Round Writes (BTW)

P1 HIR PC Report - RND 4K W

-----IOPS ------Average ------Top ------Bottom ------Slope 70,000 59,904 59,964 60,000 59,925 51,033 47,699 50,000 42,761 \$ 38,428 ନ୍ଧୁ 40,000 ପ 35,551 33,035 31,093 29,799 30,000 28,752 27,894 27,126 26,456 26,072 20,000 RND 4K W 1 Min Rounds 10,000 30 Min BTW SS Rounds 12-16 0 0 2 4 6 8 10 12 14 16 18 Flash Memory Summit 2018 Round Santa Clara, CA

P3 Measurement Windows Steady State Check RND4K

Basic Test Process: PURGE 1. 2. Workload Independent Pre-conditioning Workload Dependent Pre-3. conditioning Types of Workloads 4. **Test Settings** 5. Steady State 6. Determination

7. Report Data from Steady State Window

PTS v2.0.1 – Pseudo Steady State Determination

- Pseudo Steady State is appropriate when there are no post SS steps
 - a. Appropriate for WSAT, IOPS, TP & LAT
 - b. Post SS Rounds saturate and affect Response Times (DIRTH)
- Pseudo Steady State can be by:
 - a) Time (WSAT)
 - b) Total GB Written (WSAT)
 - c) Drive Fills (WSAT)
- 25 Round Post Process determination:
 - a) Run 25 Rounds
 - b) Post process inspection for Steady State (IOPS)

Basic Test Process:1. PURGE2. Workload Independent Pre-conditioning

- 3. Workload Dependent Preconditioning
- 4. Types of Workloads
- 5. Test Settings
- 6. Steady State Determination
- 7. Report Data from Steady State Window

Flash Memory Summit 2018 Santa Clara, CA

PTS v2.0.1 – Steady State Reporting Data

- Updated v2.0.1 Reporting: Primary & Secondary Metrics
- Required Primary Metrics include:
 - a) IOPS, TP & Response Times per individual test requirements
- Optional Secondary Metrics include:
 - a) Average/Maximum Response Times, 5 9s Response Time Quality of Service
 - b) Power consumption; IOPS/Watt; Internal Temperature
 - c) CPU System Usage; CPU IO Wait
- Secondary Metrics may become Required in Future PTS Revisions
- See PTS 2.0.1 SNIA Report Format

PTS v2.0.1 – SNIA PTS 2.0.1 Report Header

SNIA Report	Format:
-------------	---------

1. PTS 2.0.1 Header

- 2. RND 4K W SS
- 3. RND 64K RW65 SS
- 4. RND 1024K R SS
- 5. IOPS Table
- 6. Secondary Metrics

Те	st Run Dat	te:		01/19	9/16	08:11 PM	Report R	un D	n Date: 11/07/16 11:17 AM			11:17 AM
IOPS Test (REQUIRED) - Report Page												
SNIA Solid State Storage TOPS - Block Size x RW Mix Matrix Rev. PTS-E 2.0										PTS-E 2.0		
SSS TWG	Perform	nance Te	est Spe	ec (PTS)	Page 1 of						1 of 8	
Vendor:	Mfg A		SS	D Model:		SSD A - NVMe SSD TEST SPONSOR SNIA					IIĂ.	
Т	Test Platform		Devi	ice Under Test Set Up Param		rame	meters		Test Parameters			
Ref Test Plat	form Calyp	n Calypso RTP 3.0 Mfg		Mfgr		MFGR A	Data Pattern	RND_ONCE		Data Pattern		RND_ONCE
Motherboa	rd	d Model No.		.	ABCD	AR	100%		AR & Amount		100%	
CPU	Intel(R) 2687W	tel(R) Xeon(R) CPU E5- S/N		0123456	AR Segments			Test Stimulus 1		IOPS Loop		
Memory	3	31.3 GB		Firmware v	/er	Oa1b2c3d	Pre Condtion 1	SEQ 128KiB W		RW Mix		Outer Loop
Operating Sy	stem Ce	entOS 6.	5	Capacity		2000 GB	TOIO - TC/QD	TC 1 / QD 32		Block Sizes		Inner Loop
Test SW	Test SW CTS 6.5 1.23.17 Interface		9	NVMe	Duration	2 x User Capacity TO		тот	O - TC/QD	TC 8 / QD 32		
Test SW I	V Info 1.23.17/1.9.267-el6 NAND Type		e	MLC	Pre Condtion 2	IOPS Loop S		Stea	ady State	3 - 7		
Test ID N	Test ID No. R84-9014 PCIe NVM		4	U.2	TOIO - TC/QD	тс	8 / QD 32	Test S	timulus 2			
НВА	HBA SAS9212-4i4e Purge Method		bod	PURGED	SS Rounds		3 - 7	TOI	O - TC/QD			
PCIe		Gen 3		Write Cach	1e	Disabled	Note			Stea	ady State	

PTS v2.0.1 – RND 4K W Steady State

SNIA Report Format:									
1.	1. PTS 2.0.1 Header								
2.	2. RND 4K W SS								
3.	RND 64K RW65 SS								
4.	RND 1024K R SS								
5.	IOPS Table								
6.	Secondary Metrics								

Flash Memory Summit 2018 Santa Clara, CA

PTS v2.0.1 – RND 64K RW65 Steady State

SNIA Report Format:								
1.	1. PTS 2.0.1 Header							
2.	2. RND 4K W SS							
3.	RND 64K RW65 SS							
4.	RND 1024K R SS							
5.	IOPS Table							
6.	Secondary Metrics							

	-IOPS	Average			
11,000					
10,500					
10,000		•			-
9,500					
9,000					
8,500					
8,000					-
7,500					
7,000	3	3 4	5	6	7
Steady State	Determination [Data	Round		
Average IOPS	:				9070
Allowed Maxin	num Data Excursio	n:	9978.0 Measured Max	kimum Data Excursion:	1511
Allowed Maxin	num Slope Excursio	on:	6196 9 Measured May	cimum Slope Excursion:	1296

Flash Memory Summit 2018 Santa Clara, CA

PTS v2.0.1 – RND 1024K R Steady State

SNIA Report Format:

- 1. PTS 2.0.1 Header
- 2. RND 4K W SS
- 3. RND 64K RW65 SS
- 4. RND 1024K R SS
- 5. IOPS Table
- 6. Secondary Metrics

Flash Memory Summit 2018 Santa Clara, CA

SNIA Report Format:

- 1. PTS 2.0.1 Header
- 2. RND 4K W SS
- 3. RND 64K RW65 SS
- 4. RND 1024K R SS
- 5. IOPS Table
- 6. Secondary Metrics

PTS v2.0.1 – IOPS Table

Test Run Date: 01/1					9/16 08:11 PM Report Run Date: 11/07/16 11:17 AM					11:17 AM		
IOPS Test (REQUIRED) - Report Page												
SNIA Solid State Storage						TODS - Plack Size x DW Mix Matrix Rev. PTS-E						
SSS TWG	Pe	rformance 1	Test S	pec (PTS)	(PTS) 10PS - BIOCK SIZE X RW MIX Matrix Pag							
Vendor:	I	Mfg A	SS	D Model:		SSD A - N	VMe SSD	TES	r OR	IA.		
Те	est Pl	atform		Devi	ce Ur	nder Test	Set Up Pa	arameters		Test Para	ameters	
Ref Test Plat	tform	Calypso RT	P 3.0	Mfgr		MFGR A	Data Pattern	RND_ONCE	Data I	Pattern	RND_ONCE	
Motherboa	ard			Model No		ABCD	AR	100%	AR &	Amount	100%	
CPU		Intel(R) Xeon(R) 2687W v2 @ 3.	CPU ES- .40GHz	S/N		0123456	AR Segments		Test S	timulus 1	IOPS Loop	
Memory	1	31.3 GE	в	Firmware ver		0a1b2c3d	Pre Condtion 1	SEQ 128KiB W	RW	Mix	Outer Loop	
Operating Sy	ystem	CentOS 6	5.5	Capacity		2000 GB	TOIO - TC/QD	TC 1 / QD 32	Blo	ck Sizes	Inner Loop	
Test SW	v	CTS 6.5 1.2	3.17	Interface		NVMe	Duration	2 x User Capacity	TOIO - TC/QD			
Test SW I	Test SW Info 1.23.17/1.9.267-el6		NAND Type		MLC	Pre Condtion 2	IOPS Loop	Steady State		3 - 7		
Test ID N	lo.	R84-901	4	PCIe NVM		U.2	TOIO - TC/QD	TC 8 / QD 32		timulus 2		
HBA		SAS9212-4	4i4e	Purge Meth	od	PURGED	SS Rounds	3 - 7	TO	O - TC/QD		
PCIe	PCIe Gen 3		Write Cac	ne	Disabled	Note		Ste	ady State			
				IOPS -	· AL	L RW Mix 8	<mark>k BS – T</mark> abi	ular Data				
Block S	ize					Rea	nd / Write Mix	%				
(KiB))	0/10	0	5/95		35/65	50/50	65/35		95/5	100/0	
	0.5	47,1	39.1	48,8	85.0	70,740.4	89,676.2	118,331.1		338,953.4	499,097.2	
	4	61,9	69.4	65,3	24.4	90,078.8	108,316.3	104,022.5		310,634.6	407,395.3	
8		31,0)86.5	5 32,730.		44,174.2	43,065.4	67,758.7	'	171,091.2	207,067.5	
16		15,6	512.4	16,417		22,832.9	24,658.0	37,991.9)	89,209.8	104,000.5	
32		7,8	313.4	8,2	37.5	11,537.4	14,568.4	18,790.9		46,002.2	52,149.4	
64 3,904.7		04.7	4,1	26.0	5,739.5	7,519.0	9,071.1		22,856.6	26,054.5		
	128	1,9	64.8	2,0	65.9	2,843.5	3,725.5	4,465.9)	10,992.1	12,948.0	
1	024	2	248.6	2	62.2	360.8	469.6	636.5		1,659.1	1,571.6	

Secondary Metrics: IOPS, Ave Power mW, Temperature

SNIA Report Format:

- 1. PTS 2.0.1 Header
- 2. RND 4K W SS
- 3. RND 64K RW65 SS
- 4. RND 1024K R SS
- 5. IOPS Table
- 6. Secondary Metrics

IOPS ART 5 9s MRT Power Temp.

IOPS											
R108.1-12403		PTS-E	WCD	T4/Q32	DP=RND	AR100	Aln=4K	v4			
Data	Block Size	RW 0	RW 65	RW100	Block Size	RW 0	RW 65	RW100			
	0.5 KiB	20,392	47,096	121,431	32 KiB	3,049	6,560	14,666			
IOPS	4 KiB	24,183	49,072	73,714	64 KiB	1,525	3,211	7,820			
1042	8 KiB	12,193	26,032	47,470	128 KiB	760	1,591	4,057			
	16 KiB	6,112	13,410	26,901	1024 KiB	94	203	518			
Avg Power mW	0.5 KiB	3,732	3,558	2,349	32 KiB	3,805	3,702	2,794			
	4 KiB	3,767	3,656	2,350	64 KiB	3,807	3,632	2,879			
	8 KiB	3,804	3,734	2,580	128 KiB	3,806	3,576	2,952			
	16 KiB	3,809	3,745	2,691	1024 KiB	3,805	3,573	3,023			
Temp. Celsius	0.5 KiB	39	38	32	32 KiB	39	38	35			
	4 KiB	39	39	32	64 KiB	39	38	36			
	8 KiB	39	39	33	128 KiB	38	38	36			
	16 KiB	39	39	34	1024 KiB	38	36	37			

Secondary Metrics are Optional

- Summary Table: 3 RW Mixes x 8 BS
- Highlighted: RND 4K W, RND 4K RW65 & RND 4K R
- IOPS; Average Power mW; Internal SSD reported Temp Celsius

Secondary Metrics: Average Response Time, 5 9s RT, Max RT

IOPS ART 5 9s MRT Power Temp.

SNIA Report Format:

- 1. PTS 2.0.1 Header
- 2. RND 4K W SS
- 3. RND 64K RW65 SS
- 4. RND 1024K R SS
- 5. IOPS Table
- 6. Secondary Metrics

IOPS										
<u>R108.1-12403</u>		PTS-E	WCD	T4/Q32	DP=RND	AR100	Aln=4K	v4		
Data	Block Size	RW 0	RW 65	RW100	Block Size	RW 0	RW 65	RW100		
	0.5 KiB	6.28	2.72	1.05	32 KiB	41.94	19.52	8.73		
ART	4 KiB	5.29	2.61	1.74	64 KiB	83.80	39.84	16.36		
mSec	8 KiB	10.50	4.92	2.70	128 KiB	167.76	80.32	31.52		
	16 KiB	20.93	9.56	4.76	1024 KiB	1,335.89	623.58	245.51		
99.999% mSec	0.5 KiB	62.37	18.56	9.96	32 KiB	396.22	121.92	84.64		
	4 KiB	51.04	17.38	16.68	64 KiB	812.70	253.47	156.37		
	8 KiB	97.54	31.94	26.04	128 KiB	1,454.64	499.71	286.04		
	16 KiB	207.22	59.95	45.87	1024 KiB	5,260.68	2,236.18	739.21		
MRT mSec	0.5 KiB	79.48	21.23	13.32	32 KiB	445.54	128.28	112.90		
	4 KiB	71.75	20.61	21.91	64 KiB	924.70	275.87	182.35		
	8 KiB	118.33	36.44	33.06	128 KiB	1,677.05	531.65	350.00		
	16 KiB	250.46	69.43	59.28	1024 KiB	6,079.57	2,483.48	743.89		

Secondary Metrics are Optional

- Summary Table: 3 RW Mixes x 8 BS
- Highlighted: RND 4K W, RND 4K RW65 & RND 4K R
- Average Response Time, 5 9s RT, Maximum RT in mS

Part 2: RWSW PTS v 1.0.7 - Overview

Flash Memory Summit 2018 Santa Clara, CA

- RWSW PTS v1.0.7 describes methodologies for Real World IO Capture, Analysis & Test for Datacenter Storage
- IO Captures present IO Streams & Metrics that actually occur during real world application usage – not synthetic emulations

RWSWs show that:

- a. Server Storage Performance depends, in large part, on the workload
- b. RWSWs are constantly changing combinations of many IO Streams and QDs
- c. IO Streams change as they traverse the HW/SW stack
- d. RWSW Replays can improve Failure Analysis & enable Storage Qualification
- RWSW PTS defines (4) RWSW Storage Tests designed to test and qualify storage to SSSI Reference and/or User captured RWSWs

Overview - Real World Storage Workloads

Overview of RWSWs:

- 1. What are Real World Storage Workloads?
- 2. Data Center SQL Server RWSW
- 3. Why are RWSWs Important?

Windows Software Stack

Real World Storage Workloads (RWSWs) are:¹⁹

- IO Streams generated by Applications that traverse the SW stack from User space to Data Center Storage and back
- IO Streams that present to Storage at the File System, Block IO or other specified software layer
- IO Streams are modified at each layer of software abstraction by coalescing, fragmentation, appending & merging
- Data Center storage includes: SAN, NAS, DAS, JBOF, JBOD, SDS, Open, Virtualized, Object, LUN and SSD

19 RWSW PTS v1.0.7 - page 12

Data Center 24 Hour RWSW - Retail Web Portal²⁰

Real World Workloads:

- Constantly changing combinations of IO Streams & range of QDs
- IO Streams and QDs change with Time, Events and Processes
- IO Rates are throttled by real world Applications and Users

20 SSSI Reference Capture No. 3

Why are RWSWs Important?

Flash Memory Summit 2018 Santa Clara, CA

Understanding RWSWs Makes a Difference:

- Know what, where & when IO Streams actually occur
- Observe in-situ performance during the IO Capture process
- Evaluate RWSWs for:
 - software optimization
 - dev ops
 - load balancing
 - Interoperability
 - failure analysis replay
 - storage server & SSD qualification

IO Captures:

- 1. What is an IO Capture?
- 2. What is an IO Stream?
- 3. What is an IO Capture Step?
- 4. What is an IO Stream Map?
- 5. IO Capture Tools
- SSSI Reference Workloads – TestMyWorkload.com

IO Captures

✤ An IO Capture is:²¹

- a) The tabulation of IO Stream statistics, observed at a given level in the SW Stack, during the IO Trace Capture period
- b) Comprised of tables of IO statistics and metrics in binary data form – no private or personal data is captured
- c) Derived from continuous IO Trace data that is parsed into **Steps** for visualization, analytics & playback
- d) Comprised of IO Capture Steps that allow for flexibility in visualization granularity, capture length & file size

²¹ RWSW PTS v1.0.7 - page 15

Flash Memory Summit 2018 Santa Clara, CA

42

What is an IO Stream?

IO Captures:

- 1. What is an IO Capture?
- 2. What is an IO Stream?
- 3. What is an IO Capture Step?
- 4. What is an IO Stream Map?
- 5. IO Capture Tools
- 6. SSSI Reference Workloads – TestMyWorkload.com

Access Pattern	RND or SEQ	Block Size	Read/Write	Queue Depth Ave/Max	% Occurrence	Quantity (IOs)
SEQ 1.5K W	SEQ	1536	W	1/111	1.34	69
SEQ 1K W	SEQ	1024	W	1/111	4.32	223
SEQ 0.5K W	SEQ	512	×	1/111	9.24	477
SEQ 4K W	SEQ	4096	W	1/111	22.31	1152
SEQ 16K W	SEQ	16384	×	1/111	14.25	736
RND 4K W	RND	4096	W	1/111	9.8	506
RND 3.5K W	RND	3584	×	1/111	0.62	32
RND 3K W	RND	3072	W	1/111	0.58	30
RND 2.5K W	RND	2560	×	1/111	0.74	38
RND 8K R	RND	8192	R	1/111	0.15	8
RND 2K W	RND	2048	×	1/111	0.93	48
RND 1.5K W	RND	1536	W	1/111	1.74	90
RND 1K W	RND	1024	×	1/111	3.21	166
RND 0.5K W	RND	512	W	1/111	1.99	103
RND 8K W	RND	8192	×	1/111	2.73	141
RND 4K R	RND	4096	R	1/111	0.91	47
RND 12K W	RND	12288	×	1/111	1.24	64
RND 16K W	RND	16384	W	1/111	15.63	807
RND 20K W	RND	20480	W	1/111	0.58	30
RND 28K W	RND	28672	W	1/111	2.03	105
RND 36K W	RND	36864	w	1/111	0.19	10

IO Stream Table: 2 Minute Capture Step showing IO Stream Statistics

- An IO Stream is a distinct:²²
 - a) Read or Write IO (Input / Output) Operation
 - b) RND or SEQ Access
 - c) Data Transfer Size (Block Size)
- A single IO Stream can occur many times during a single IO Capture step
- Other metrics and data are associated with IO Streams (such as Response Times, Process IDs, Queue Depths)

Flash Memory Summit 2018 Santa Clara, CA 22 RWSW PTS v1.0.7 - page 30

What are IO Capture Steps?

10	Captures:	### Replay representation for workload 'Cumulative Workload' ## Step 1 # Timestamp Delta (sec) IOs Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 1455560603.613 302.219 1233 9192980 0.15 5 2.71 125.89 4.97 44 9683 # Stream RND/SED Size dytes) R WW Quantity (%) Amount (%) Amount (%) Amount (%) Amount (%)
1.	What is an IO Capture?	SEQ 0.5K W SEQ 512 W 4.87 60 0.33 30720 SEQ 8K R SEQ 8192 R 0.08 1 0.09 8192 RND 4K W RND 4096 W 47.61 587 26.15 2404352 RND 8K R RND 8192 R 1.22 15 1.34 122880
2.	What is an IO Stream?	## 5tep 2 # Timestamp Delta (sec) IOs Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 1455561105.832 300.547 798 4341246 0.209 166 33.66 4.99 41.3916 # Stream RND/SEQ Size Dytes) R VWQuantity (%) Amount (%) Amount (bytes)
3.	What are IO Capture Steps?	RND 4K W RIND 4096 W 53.26 425 40.10 1740800 SEOLOSK W SEC312 W 13.41 107 1.26 54784 RND 8K R RND 8192 R 0.13 1 0.18 8192 RND 64 K R RND 65536 R 0.13 1 1.51 65536 ## Step 3
		# Timestamp Delta (sec) IOs Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 1455561406.379 300.656 761 9361920 0239 2.33 163.45 4.694.20124 # Straam BND/SFC Size (bytes) BM Quantity (%) Quantity (Del Amount 6)
4.	What is an IO Stream Map?	SEO 05.4W SEO512 Size 09469 FW coaling (V) Coaling (va) Filliouni (v) Filliouni (v) Filliouni (v) Keel RND 4K W RND 4096 W 50.46 384 16.80 1572864 RND 64K R RND 65536 R 0.66 5 3.50 327680
5.	IO Capture Tools	## Step 4 # Timestamp Delta (sec) IOs Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 1455561707.035 300.578 726 4136448 0.21 10 1.71 76.96 5.28 35.9942 # Stream RND/SEQ Size (bytes) RYWQuantity (%) Quantity (IOs) Amount (%) Amount (bytes) RND 4K W RND 4096 W 50.41 366 38.24 1499136 SEO 0.5K W SEC512 W 10.47 76 0.943 68912
6.	SSSI Reference	ND BK R RND 8192 R 0.69 5 0.99 40960 SEQ 8K R SEQ 8192 R 0.96 7 1.39 57344
	Workloads – TestMyWorkload.com	## Step 5 # Timestamp Delta (sec) IOs Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 1455582007.613 300.578 671 3803136 0.3110 1.60.88.29 5.61 42.4012 # Stream RND/SEC Size (bytes) R WW Quantity (K0) Quantity (IOs) Amount (%) Amount (bytes) RND 4K W RND 4096 W 58.27 391 42.11 1601536 SEC 0.5K W SEC 512 W 8.49 57 0.77 29184 RND 8K R RND 8192 R 0.15 1 0.22 8192
		## Step 6 # Timestamp Delta (sec) iOs Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 14555208207 300.594 835 3642368 0.209 1.21 18.16 5.32 43.0401 # Stream RNDSEQ Size Bytes) RW Quantity (%) Quantity (IOs) Amount (%) Amount (bytes) RND 4K W RND 4096 W 63.62 404 45.43 1654784 SEQ 0.5K W SEQ 512 W 0.94 6 0.08 3072
		## Step 7 # Step 7 # Timestamp Delta (sec) IOS Amount (bytes) Avg QD Max QD Avg RT (ms) Max RT (ms) Compress.Ratio Dupl.Ratio (%) 145552608.601 300.666 521 3213312 0.20 1.06 27.00 5.98 40.5197 # # Stream RND/SEQ Size (bytes) RWQ uantity (f0a) Amount (%) Amount (bytes) RND 44K NND 406 W 64.00 335 42.70 1372160 SEQ 0.5K W SEQ 512 W 0.38 0.03 1024

Flash Memory Summit 2018 Santa Clara, CA IO Capture Steps: Capture Steps Aggregate IO Stream Statistics

*	IO	Capture	Steps	are:23
---	----	---------	-------	--------

- a) The aggregation of IOs and metrics into discrete time intervals
- b) Metrics that are averaged over the interval and reported as steps
- Step Resolution:
 - a) Can be widened to optimize file size for long duration captures
 - b) Can be narrowed to observe IO Bursts, Disk Utilization, IO Sequentiality and Quality of Service
- Unlike continuous IO Trace data, IO Captures are a series of discrete time interval steps
- IO Capture Steps may appear continuous or discrete depending on temporal resolution

23 RWSW PTS v1.0.7 - page 15

44

What is an IO Stream Map?

Flash Memory Summit 2018 Santa Clara, CA

IO Stream Maps are visual representations of IO Capture Steps where:²⁴

- Each IO Step is plotted as a time point on the x-axis showing IO Streams by Frequency (IOPS) or Amount Transferred (MB/s)
- IO Metrics are presented as data series along the y-axis
- Metrics include:
 - Process IDs (PID) for each IO
 - IO Stream Composition
 - IOPS, MB/s, RTs, QDs
- Workloads can be parsed by Time, Event, PID, IO Stream Threshold and other criteria

24 RWSW PTS v1.0.7 - page 30

What are some IO Capture Tools?

IO Captures:

- 1. What is an IO Capture?
- 2. What is an IO Stream?
- 3. What are IO Capture Steps?
- 4. What is an IO Stream Map?
- 5. IO Capture Tools
- SSSI Reference Workloads – TestMyWorkload.com

www.TestMyWorkload.com

- IO Capture tools are:²⁵
 - a) Public or private, fee or free
 - b) Specific for OS and software layer
 - c) Designed to capture IO traffic
 - d) Capture various IO metrics
- Free tools include blk-trace for Linux, Perfmon for Windows and IOProfiler for cross OS platform
- IOProfiler IO Capture Applets are:
 - a) Free at TestMyWorkload.com
 - b) Windows, Linux or MacOS
 - c) File System or Block IO layer
 - d) Free upload and visualization at TestMyWorkload.com

25 RWSW PTS v1.0.7 - page 27

SSSI Reference IO Capture Workloads

IO Captures:

- 1. What is an IO Capture?
- 2. What is an IO Stream?
- 3. What are IO Capture Steps?
- 4. What is an IO Stream Map?
- 5. IO Capture Tools
- 6. SSSI Reference Workloads – TestMyWorkload.com

www.testmyworkload.com/info/demo

- SSSI Reference IO Captures at TestMyWorkload.com:
 - 1. 24-Hr Retail Web Portal
 - 2. SNIA Green Storage TWG Workload
 - 3. 24-Hr GPS Navigation Portal
- Free Data Analytics
- Free Export of IO Capture Steps for use with 3d Party software tools
- Additional Workloads posted with ongoing SSS TWG research

Analysis:

1. Overview

- 2. IO Stream Composition
- 3. IO Stream PIDs
- 4. Compare File System Drive C & Drive 0
- 5. Compare Frequency (IOPS) v Amount Transferred (MB/s)
- 6. Compare Block IO on Drive 0 & Drive 1
- 7. LBA Range Hit Map
- 8. Examples: Data Analytics

Flash Memory Summit 2018 Santa Clara, CA

Analysis - Overview

- Workload Visualization with IO Stream Maps:
 - 1. IO Stream Maps present the IO Streams and Metrics that occur during the IO Capture
 - 2. Resolution can be adjusted to show long duration captures with reasonable file sizes
 - 3. Fine grain resolution can enable micro second analysis of IO Capture events
- Identification of IO Process IDs:
 - 1. IO PIDs show IO association with individual processes (applications)
 - 2. PID enable load balancing, interoperability and failure analysis
- Observation of Specific Software layer IO Traffic:
 - 1. Enables validation of software optimizations
 - 2. Confirms how IO Streams change as they traverse the software stack
 - 3. Allows tracking of individual IOs to storage architecture layers and logical storage

IO Stream Composition

Flash Memory Summit 2018 Santa Clara, CA

IO Stream Map displays IO Stream Composition for each Step

- Each x-axis point is an IO Step
- Each IO Step is comprised of a unique combination of IO Streams
- Cumulative Workload:
 - Presents IO Streams by percent occurrence over the entire IO Capture duration
 - The IO Streams presented can be filtered by the 'Threshold' value
 - 2% Threshold shows all IO Streams that occur 2% or more of the time over the entire capture
 - At 2% Threshold, 9 IO Streams represents 78% of the total IO Streams (1,033 IO Streams)

IO Streams - Process IDs

IO Stream Process IDs (PID):

- PIDs can be shown for each IO
- Cumulative Workload shows 49 PIDs
- IO Stream Map can be filtered by:
 - IO Streams by PID e.g. SQL IOs
 - Time point or Range
 - Event
- IO Streams at Time: 06:16:17
 - IOs can show multiple PIDs (sqlserver.exe, mysqld.exe, lsass.exe)
 - IOs can show single PIDs (sqlserver.exe)

Cumulative Workload - by Frequency v Amount Transferred

Flash Memory Summit

Flash Memory Summit 2018 Santa Clara, CA 24-Hour GPS Navigation Portal Example No. 6 TestMyWorkload.com

- IO Streams by Frequency (IOPS)
 - 1. Drive C File System level
 - 2. 24-Hour Capture
- Workload Settings
 - 1. IO Streams Threshold 1%
 - 2. Temporal Resolution 2 Min
- Cumulative Workload Box:
 - 1. IO Streams at 1% Threshold
 - 2. 9 IO Streams/86% of Total IOs
 - 3. 9.942M IOs of 11.526M IOs
- IO Stream Combinations vary for each IO Step

Cumulative Workload – Frequency v Amount Transferred

Flash Memory Summit Profile Details Profile Analysis Script C: Drive0 Settings Path: C: Model: NTFS Volume: 53 GB IOs: 11,526,799 Read: 47.1 GiB Written: 42.7 GiB Metric: Amount trans \$ Values: Absolute \$ Threshold: 1% \$ Resolution: 2 min \$ Streams Range Hits Descriptions Processes Playback Workload Streams (by transferred amount) 🗖 RND 911730b R 🔰 RND 844282b R 📑 RND 16K W 📑 SEQ 16K W 🔤 RND 1M W 📑 SEQ 64K W 📑 RND 223842b R 📑 SEQ 64K R 📑 SEQ 2M R SEQ 4M R 🖉 RND 190898b R 📓 SEQ 4K W 🔤 RND 4K W 🔤 RND 896K W 🔤 RND 86K W 🗰 SEQ 256K W 🔶 Throughput 🛖 IOs 🔸 Avg Response Time - Max RT - Avg Queue Depth - Max QD - Compressibility - Duplication - Disk Utilization - Files - Read 🛨 Written 🛛 🕂 Total Read - Total Written 7k 60 Σ Cumulative Workload × 13.7 RND 911730b R 15.3% RND 844282b R 12.7 14.1% 6k 50 RND 16K W 7.8% 7.0 SEQ 16K W 5.8% 5.2 🛛 RND 1M W 5k 4.3% 3.9 (MB) 40 SEQ 64K W 3.8% 3.4 Throughput (MB/s) Amount Transferred RND 223842b R 3.7% 3.4 SEQ 64K R 3.4% 3.1 SEQ 2M R 3.4% 3.1 SEQ 4M R 3.4% 3.1 Total IOs of 7,169 streams: 89.8 GiB Selected 16 streams: 68.8 GiB (77%) E 20 2k 10 1k 0 02:00:00 04:00:00 06:00:00 08:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00 22:00:00

Flash Memory Summit 2018 Santa Clara, CA 24-Hour GPS Navigation Portal Example No. 6 TestMyWorkload.com

- IO Streams by Amount Transferred (MB/s)
 - 1. Drive C File System level
 - 2. 24-Hour Capture
- Workload Settings
 - 1. IO Streams Threshold 1%
 - 2. Temporal Resolution 2 Min
- Cumulative Workload Box:
 - 1. IO Streams at 1% Threshold
 - 2. 16 IO Streams/69.8% of Total IOs
 - 3. 68.8 GiB of 89.8 GiB
 - 4. Note: 911,730b = 1,780.7KB

Comparison: 2 am sqlserver.exe Back-up - Drive 0 & Drive 1

Flash Memory Summit Profile Details Profile Analysis Script Drive0 Drive1 Settings IO Streams at 02:00:19 Path: \\.\PhysicalDrive0 Model: Virtual HD Volume: 214 GB IOs: 4,326,159 Rea GiB ~ IOPS: 531 RND 64K R: 646 Metric: Frequency Values: Absolute \$ Threshold: 3% 🛊 Resolution: 5 min \$ Streams ses Playback sqlservr.exe: 646 Workload Streams (by frequency) SEQ 0.5K W: 25 sqlservr.exe: 25 📕 RND 64K R 📕 SEQ 0.5K W 📕 RND 8K R 📕 SEQ 8K R 📕 RND 4K W 📕 SEQ 64K R 🔶 IOPS Max RT RND 8K R: 1.313 - Avg Queue Depth + Max QD --- Compressibility --- Duplication --- Read --- Written - Total R sqlservr.exe: 1,313 2 am Data Back-up 150k 800 SEO 8K R: 248 Cumulative Workload sqlservr.exe: 02:00:19 Σ × в × sqlservr.exe: 248 SEQ 64K R: 134,808 RND 64K R 19.5% 841,495 SEQ 64K R 84.7% 134,808 700 sqlservr.exe: 134,808 125k SEQ 0.5K W 17.9% 775,072 RND 4K R 1.67% 2,652 RND 4K R: 2,652 RND 8K R 10.5% 454,786 RND 24K R 1.21% 1,933 600 sqlservr.exe: 2,652 SEQ 8K R 8.8% 381,168 SEQ 60K R 1.18% 1,882 RND 24K R: 1,933 100k sqlservr.exe: 1,933 RND 4K W 4.1% 179,391 SEQ 40K R 1.11% 1,772 500 los RND 32K R: 1.420 SEQ 64K R RND 32K R 3.5% 152,723 0.89% 1,420 of sqlservr.exe: 1,420 RND 8K W 2.91% 125,959 SEQ 32K R 0.84% 1,342 400 75k RND 12K R: 1,276 Quantity RND 4K R 2.74% 118,560 RND 8K R 0.82% 1,313 sqlservr.exe: 1,276 RND 36K R: 1,113 DND 40K D 4 0 40 00.000 DND 40K D 4.070 0.00 Total IOs of 5.038 streams; 4.326,159 Total IOs of 36 streams: 159,181 300 sqlservr.exe: 1,113 50k Selected 6 streams: 2,784,635 (64%) E Selected 1 stream: 134,808 (85%) RND 20K R: 965 salservr.exe: 965 200 RND 48K R: 547 salservr.exe: 547 25k RND 16K R: 507 100 sqlservr.exe: 507 RND 40K R: 494 -0 sqlservr.exe: 494 03:00:00 06:00:00 09:00:00 00:00:00 12:00:00 15:00:00 RND 44K R: 267

Flash Memory Summit 2018 Santa Clara, CA 24-Hour Retail Web Portal

Example No. 3 TestMyWorkload.com

- Cumulative Workload by IO Stream Threshold
 - 1. Drive 0 Block IO
 - 2. Resolution 5 min
 - 3. IO Streams Threshold 3%
 - 4. IO Streams 6 Streams; 64%
- 2 am Data Back-up by IO Stream Threshold
 - 1. IO Stream Threshold 3%
 - 2. IO Streams 1 Stream; 81.1%
 - 3. SEQ 64K R, 134,808 IOs
- 2 am by Process ID (sqlserver.exe)
 - 1. PID sqlserver.exe
 - 2. SEQ 64K R, 134,808 IOs

LBA Range Hit Map: SEQ IOs

Flash Memory Summit 2018 Santa Clara, CA Drive C: Back-up Activity

- IO Stream Map at Time = 1:01:59
 - 1. Throughput: 82 MB/s
 - 2. SEQ 64K W: 38.5 MB
 - 3. SEQ 64K R: 34.4 MB
 - 4. Other IOs: 9.1 MB
- ✤ LBA Range Hit Map at Time 1:01:59
 - 1. SEQ 64K R: 0.030 GiB at LBA 92.1% +/- 0.1%
 - 2. SEQ 64K W: 0.034 GiB at LBA 78.5% +/- 0 .1%
- ✤ LBA Map Range Hits
 - 1. Gray Line = 64K R
 - 2. Blue Line = 64K W
 - 3. Diagonal Lines indicate SEQ Accesses

Data Analytics: IOPS, Amount Transferred, RTs & Queue Depths

Flash Memory Summit

A IO Stream Map by Frequency – IO Rate in IOPS IOPS, Ave/Max Response Times, 3% Threshold

Flash Memory Summit 2018 Santa Clara, CA

B IO Stream Map by Amount Transferred – Throughput in MB/s MB/s, Ave/Max Queue Depth

Data Analytics: Compression & Duplication Ratios

A Compression Ratio: How much more compressible is data CR of 3.1 means data can be compressed 3.1 Times MORE

Flash Memory Summit 2018 Santa Clara, CA B Duplication Ratio – How many duplicative blocks are written DR of 28% means that 28% of written blocks are duplicates

Data Analytics: Disk Utilization & IO Sequentiality

A Disk Utilization: IOs and Disk IO Idle Times Disk Utilization of 84% = 16% Disk IO Idle

Flash Memory Summit 2018 Santa Clara, CA

B IO Sequentiality – Adjacent LBA Range Hits

Diagonal LBA Range Hit lines indicate Sequential IOs

Data Analytics: Temporal Granularity & Step Resolution

Overview - Key Test Process Concepts²⁶

Overview - RWSW Tests:

1. Key Test Process Concepts

- 2. Define the Test Workload
- 3. Applied Test Workloads
- 4. Basic Test Flow
- 5. Test Settings

RWSW Tests are intended to:

- 1. Analyze in-situ performance of the target server during the IO Capture
- 2. Optimize Data Center Storage performance
- 3. Validate & Qualify Data Center Storage
- Test Operator shall select and disclose the following:
 - 1. OS, IO capture tool used & the IO capture layer (File System, Block IO or other)
 - 2. The RWSW (which can be an SSSI Reference or User selected workload)
 - 3. The Applied Test Workload (which is filtered/parsed from the RWSW)
 - 4. The Data Center Storage to be tested (logical storage recognized by OS)

Test Storage Preparation:

- 1. It is recommended to apply the RWSW to Steady State (SS) when possible
- 2. It may be impractical to PURGE, Pre-condition (PC) or bring RWSW to SS
- 3. Test operators shall select an appropriate PC regime and disclose it in the test results

26 RWSW PTS v1.0.7 - page 24

Overview - RWSW Tests:			
1.	Key Test Process Concepts		
2.	Define the Test Workload		
3.	Applied Test Workloads		
4.	Basic Test Flow		
5.	Test Settings		

Flash Memory Summit 2018 Santa Clara, CA

Define the Test Workload

- Run IO Capture to obtain RWSW at desired software level:²⁷
 - 1. File System
 - 2. Block IO
 - 3. User selected (virtualized, cluster, LUN, hypervisor, custom, other)
- Create / Select Real World Storage Workload:
 - 1. SSSI Reference Workload
 - 2. User selected/defined RWSW
- Create Applied Test Workload:
 - 1. Filter/parse the selected IO Capture as desired (by Time, Event, PID, etc.)
 - 2. Set the IO Stream Threshold
 - 3. Define the Applied Test Workload & IO Stream Distribution

27 RWSW PTS v1.0.7 - page 12

Applied Test Workloads

SEQ 4K W

RND 4K W

SEQ 1K W

RND 8K W

RND 1K W

RND 16K W 12.0%

SEQ 0.5K W 11.7%

SEQ 16K W 10.7%

Overview – RWSW Tests:

1. Key Test Process Concepts

- 2. Define the Test Workload
- 3. Applied Test Workloads
- 4. Basic Test Flow
- 5. Test Settings

Σ	Cumulative	e Workloa	d 💥
S	SEQ 4K W	21.6%	757,697
🔽 F	RND 16K W	12.0%	422,999
<mark>.</mark>	SEQ 0.5K W	11.7%	409,357
<mark>.</mark>	SEQ 16K W	10.7%	376,211
🔽 F	RND 4K W	9.6%	336,424
v 5	SEQ 1K W	4.9%	173,343
F	RND 8K W	3.5%	121,532
V	RND 1K W	2.4%	84,592
v 5	SEQ 1.5K W	2.1%	72,871
	RND 28K W	1.95%	68,616
Total IOs of 1,033 streams: 3,512,860 Selected 9 streams: 2,755,026 (78%) E			

Cumulative Workload Selected from SSSI Ref. Capture No. 6 9 IO Streams = 78% of Total IOs Applied Test Workload 9 IO Streams Normalized to equal 100%

SEQ 1.5K W 2.07%

Σ0 Drive0 Cumulative W 💥

21.6%

9.6%

4.9%

3.5%

2.41%

27.3

15.4

14.9

13.7

12.2

6.3

4.4

3.1

2.65

Create the Applied Test Workload:28

- First, the IO Capture workload is filtered, or parsed, as the user desires – often the Cumulative Workload is selected
- The filtered IO Streams and metrics are used to create an Applied Test Workload
- IO Stream percentages of the desired workload are normalized to equal 100%
- The Applied Test Workload is used in the RWSW tests as specified, but can be:
 - 1. A replay of the IO Capture sequence
 - 2. A fixed composite of the IO Streams
 - 3. Individual IO Streams tested to SS
 - 4. A fixed composite DIRTH test

28 RWSW PTS v1.0.7 - page 32

Overview – RWSW Tests:

1. Key Test Process Concepts

- 2. Define the Test Workload
- 3. Applied Test Workloads
- 4. Basic Test Flow
- 5. Test Settings

Basic Test Flow

- RWSW PTS Basic Test Flow:²⁹
 - a) PURGE
 - b) Apply Pre-Conditioning
 - c) Run to Steady State
 - d) Apply RWSW
 - e) Report Measurements

Flash Memory Summit 2018 Santa Clara, CA ²⁹ RWSW PTS v1.0.7 - page 24

64

Overview – RWSW Tests:

- 1. Key Test Process Concepts
- 2. Define the Test Workload
- 3. Applied Test Workloads
- 4. Basic Test Flow
- 5. Test Settings

Flash Memory Summit 2018 Santa Clara, CA

Test Settings

- PURGE & Pre-Conditioning:³⁰
 - a) It may be impractical to PURGE and run Pre-conditioning
 - b) Target Data Center Storage may be LUNs or other logical storage
- Steady State
 - a) Apply RWSW until performance meets the Steady State Criteria
 - b) Measurement values should be relatively time invariant
- ✤ Active Range: AR=100 for Enterprise; AR=75 for Client
- Data Pattern: DP= Random
- Test Operator may select other test settings so long as settings are Disclosed

30 RWSW PTS v1.0.7 - page 24

65

RWSW Tests:

- 1. Target Server Self Test
- 2. Replay Native
- 3. Individual Streams WSAT
- 4. Multi-Stream WSAT
- 5. RWSW DIRTH

Note:

Sample test data in this section is based on SSSI Reference IO Capture Workload No. 3 – 24-Hour SQL Server Retail Web Portal. Demo and example located at www.testmyworkload.com/info/demo

Flash Memory Summit 2018 Santa Clara, CA

RWSW Tests

Purpose of Tests:³¹

- 1. To analyze in-situ target server storage performance using IO Captures
- 2. To characterize and test Data Center storage performance using RWSWs

RWSW PTS sets forth five tests:

- 1. Target Server Self Test Pseudo test that reports metrics during IO Capture process
- 2. Replay Native reproduces the sequence and combinations of IO Streams for testing
- 3. Individual Streams WSAT tests each individual IO Stream to Steady State
- 4. Multi-Stream WSAT applies the fixed composite of IO Streams for every test step
- 5. RWSW DIRTH applies the fixed composite IO Stream steps across a range of OIO

Results Reporting:

- 1. All Test Settings, Workload Composition and Test Variables shall be disclosed
- 2. Additional settings, metrics & reports are Optional
- 3. Test Operator may select SSSI Reference Workloads or apply User selected RWSWs

³¹ RWSW PTS v1.0.7 - page 13

Target Server Self-Test: In Situ Performance

Flash Memory Summit 2018 Santa Clara, CA

Target Server Self-Test presents performance of the Target Server during the IO Capture Process³²

- Target Server Self-Test:
 - 1. Is a pseudo-test, not an actual test
 - 2. Is a compilation of measurements based on metrics taken during the IO Capture
 - 3. Server Performance is throttled by the Users, HW/SW & applications (and thus can be lower than lab tests that use the RWSW as the test workload)
- Target Server Self-Test Reports include:
 - 1. IO Streams Distribution v Segments
 - 2. IOPS & TP v Time
 - 3. Response Time Latency v Time
 - 4. Outstanding IO (OIO) v Time Thread Count x Queue Depth

³² RWSW PTS v1.0.7 – page 33

67

Flash Memory Summit 2018 Santa Clara, CA

Replay Native Test

Replay Native reproduces the sequence and combinations of IO Streams & QDs of the IO Capture³³

- Replay Native Workload:
 - Sequence of IO Streams & QDs observed during the capture are applied to each test step
 - RWSW DIRTH test or other RWSW Test recommended to be used as PC as PC & SS are difficult w/ Replay (due to changing step combinations)
- Replay Native Reports include:
 - IO Streams Distribution v Segments (Cumulative Workload listed as listing every step composition is impractical)
 - 2. IOPS & TP v Time
 - 3. Response Time Latency v Time
 - 4. Outstanding IO (OIO) v Time Thread Count x Queue Depth

³³ RWSW PTS v1.0.7 – page 39 68

Individual Streams WSAT Test

Flash Memory Summit 2018 Santa Clara, CA

100

0

RND 64K R

SEQ 0.5K W

RND 8K R

SEQ 8K R

Segments

SEQ 64K R

125

RND 8K W

1000

500

Individual Streams WSAT applies each individual IO Stream to Steady State³⁴

- Individual Streams WSAT Workload:
 - 1. Each IO Stream is applied to SS
 - 2. Ind. Stream SS can be compared to mfgr benchmark tests
- Individual Streams WSAT Reports include:
 - 1. IO Streams Distribution v Segments
 - 2. Segment IOPS v Time (run to SS)
 - 3. IOPS & Response Time by Segment
 - 4. Throughput & Power by Segment

³⁴ RWSW PTS v1.0.7 – page 54 69

Multi-Streams WSAT Test

250

250

300

350

300

350

Flash Memory Summit 2018 Santa Clara, CA

Multi-Streams WSAT applies the fixed composite of IO Streams to Steady State³⁵

- ✤ Multi-Streams WSAT Workload:
 - 1. The fixed composite of the IO Streams is applied to SS
 - 2. PURGE & Pre-conditioning are optional, SS is required
- Multi-Streams WSAT Reports include:
 - 1. IO Streams Distribution v Segments
 - Segment IOPS v Time (run to SS) 2.
 - IOPS & Response Time by Segment 3.
 - 4. Throughput & Power by Segment

35 RWSW PTS v1.0.7 - page 48 70

RWSW DIRTH Test

RWSW DIRTH applies the fixed composite of IO Streams to Steady State then varies OIO³⁶

- RWSW DIRTH Workload:
 - 1. Applies the fixed composite of IO Streams to SS followed by OIO loop
 - 2. Shows IO & Bandwidth saturation across a range of OIO from 1 to 1,024
- RWSW DIRTH Reports include:
 - 1. IO Streams Distribution v Segments
 - 2. RT Histogram for Max IOPS 16,575
 - 3. Quality of Service: OIO 1, 8, 32
 - 4. ART, 5 9s & TP v Total OIO Range

³⁶ RWSW PTS v1.0.7 – 63 71

Flash Memory Summit 2018 Santa Clara, CA

Thank You 감사합니다 Natick Danke Euxopιστίες Dalu Danke Euxopιστίες Dalu Danke Euxopιστίες Dalu Thank You Tack Office Criacubo Dank Gracias 的的的 Merci & Seé

www.TestMyWorkload.com

edenkim@calypsotesters.com

Flash Memory Summit 2018 Santa Clara, CA