Flash Reliability in Production: The Expected and the Unexpected

Bianca Schroeder University of Toronto

Raghav Lagisetty, Arif Merchant Google Inc.

Main research interests

- System reliability
- Why and how do systems fail in the wild?

Field data

Data from a large number of large-scale production systems at different organizations:

Field data

- Different hardware failure events
 - Hardware replacements
 - Correctable and uncorrectable errors in DRAM
 - Server outages
 - Hard disk drive failures
 - Sector errors in hard disk drives
 - Data corruption in storage systems
 - Failures in solid state drives
- Job logs
 - •Google, OpenCloud (Hadoop cluster at CMU), Yahoo! Hadoop trace
 - Observations often different from expectations
 - Surprising to <u>operators</u> as well as <u>manufacturers</u>

Field data

- Different hardware failure events
 - Hardware replacements
 - Correctable and uncorrectable errors in DRAM
 - Server outages
 - Hard disk drive failures
 - Sector errors in hard disk drives
 - Data corruption in storage systems
 - Failures in solid state drives

- Job logs
 - •Google, OpenCloud (Hadoop cluster at CMU), Yahoo! Hadoop trace
 - Observations often different from expectations
 - Surprising to <u>operators</u> as well as <u>manufacturers</u>

Flash reliability

- Why flash?
 - More and more data is living on flash
 => data reliability depends on flash reliability
 - Worry about flash wear-out
- Little prior work on <u>production systems</u>
 - Lab studies using accelerated testing
 - Only one field study (Sigmetrics'15)

The data

Drive replacements

 Percentage of drives replaced annually due to suspected hardware problems over the first 4 years in the field:

- ~1-2% of drives replaced annually, much lower than hard disks!
- 0.5-1.5% of drives developed bad chips per year
 - Would have been replaced without methods for tolerating chip failure

Non-transparent errors common:

- 26-60% of drives with uncorrectable errors
- 2-6 out of 1,000 drive days experience uncorrectable errors
- Much worse than for hard disk drives (3.5% experiencing sector errors)!

What factors impact flash reliability?

- Wear-out (limited program erase cycles)
- Technology (MLC, SLC)
- Lithography
- Age
- Workload

- What reliability metric to use?
 - Raw bit error rate (RBER)
 - Probability of uncorrectable errors
 - Why not UBER? We shall see ...

Effect of wear-out (program erase cycles)

Common expectation: Exponential increase of RBER with PE cycles

Effect of wear-out (program erase cycles)

- Big differences across models (despite same ECC)
- Linear rather than exponential increase
- No sudden increase after PE cycle limit

Effect of type of flash (SLC versus MLC)

Common expectation: Lower error rates under SLC (\$\$\$) than MLC

Effect of type of flash (SLC versus MLC)

- RBER is lower for SLC drives than MLC drives
- Uncorrectable errors are <u>not consistently lower</u> for SLC drives
- SLC drives don't have lower rate of repairs or replacement

Effect of lithography

Common expectation: Higher error rates for smaller feature size

Effect of lithography

- Smaller lithography => higher RBER
- Lithography has no clear impact on uncorrectable errors

Effect of age (time in production)?

Age has an effect beyond PE-cycle induced wear-out

Effect of workload?

- Lab studies demonstrate workload induced error modes
 - Read disturb errors
 - Program disturb errors
 - Incomplete erase operations

How does workload affect error rates?

- Reads do affect RBER (even after controlling for PE cycles)
 - Erases and writes don't
 - Effects model dependent
- Workload does not affect <u>uncorrectable errors</u>
 - UBER is not a meaningful metric

Other factors

- Different RBER for same model in different clusters
- Other factors at play ...

RBER and overall reliability

- The main purpose of RBER is as a metric for overall drive reliability
- Allows for projections on uncorrectable errors

RBER and uncorrectable errors

 Drive models with higher RBER don't have higher frequency of uncorrectable errors

RBER and uncorrectable errors

- Drives (or drive days) with higher RBER don't have higher frequency of uncorrectable errors
- RBER is not a good predictor of field reliability
- Uncorrectable errors caused by other mechanisms than corr. errors?

What is predictive of uncorrectable errors?

- Prior errors highly predictive of later uncorrectable errors
- Can we predict uncorrectable errors?

CAN WE PREDICT UNCORRECTABLE ERRORS?

- Prediction using CART models shows interesting trade-offs
 - Can catch ~30% of errors at low <0.5% false positive rate
 - Can catch 80% of errors at 20-30% false positive rate

More in the paper, that's not in the talk

- Comparing field RBER and prior projections based on accelerated life tests
 - Real RBER hard to predict
- Study of bad blocks & factory bad blocks
 - Vast differences between models
 - Can quickly degrade to bad chips
 - Factory-bad blocks predictive
- Study of bad chips
- Closer look at repair and replacement rates

Full paper published at Usenix FAST'2016: "Flash Reliability in Production: The Expected and the Unexpected" with Raghav Lagisetty and Arif Merchant.

29

Flash reliability – key points

- Significant rate of non-transparent errors
 - Higher than hard disk drives
 - To some degree predictable
 - Need to protect against those!
- Many aspects different from expectations
 - Linear rather than exponential increase with PE cycles
 - RBER not predictive of non-transparent errors
 - SLC not generally more reliable than MLC
- Many other results not covered in talk ...