

Flash in a Hybrid Cloud World

How "Cloud Shift" will affect flash in the Data Center Steve Knipple: Cloud Shift Advisors

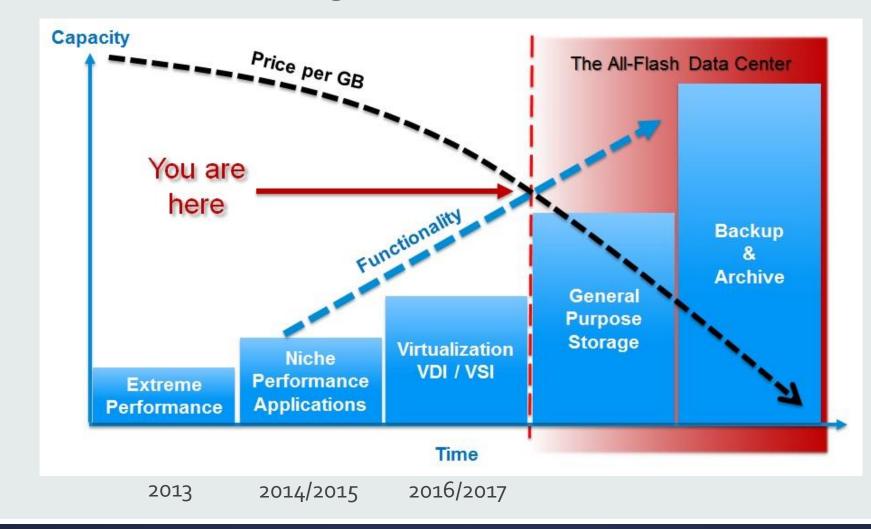
Abstract Study the Intersection of 2 Major Trends

- The maturation of FLASH products for the data center
- The growth of HYBRID CLOUD as a common, and often preferred, deployment model for IT Infrastructure

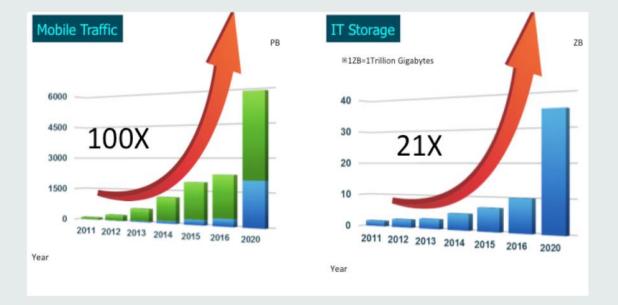
SPEED

SCALE

Things to think about...


- How does a Hybrid Cloud deployment impact an organization operationally?
- Was does Flash represent from a service standpoint?
- What type of skills are needed to operate in this new paradigm?
- How will the disruption created by the cloud impact the disruption created by Flash?
- Extrapolate the trends we discuss today... where does that take us?

Flash in the Data Center


We've come a long way in a short time

Flash continues to grow in the data center...

Storage growth continues driven by...

- New applications (IoT, Big Data)
- Geo-Dispersion of data creates multiple copies
 - For disaster resiliency
 - For localization of workload to improve performance
- Content created (and shared) with social media

Data Center Flash Options abound

Performance

- IOPS / Throughput / Latencies
- Form factors
 - All flash arrays
 - Hybrid Arrays
 - Local (SATA, PCI-E)
- Suppliers
 - New entrants
 - Established players
 - In-house builds

The outlook for Flash is bright

- Roadmaps promise innovation
- More performance
- Higher density
- Lower cost

The size of this conference proves it!

Who buys Flash for their Data Centers?

Software companies

- Revenue comes directly from the sales of their software (SaaS or Paas)
- Business is created by the use of technology

Examples

Linked-in, Facebook, Amazon.

Enterprises

- Software is used to enable their business
- Their core service is not software

Examples

- Hospitals
- Manufacturing
- Traditional Banks

The Cloud

The Cloud is a business model

A transformative business model

Essential Characteristics

- On demand self service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

Service Models

- Software as a Service
- Platform as a Service
- Infrastructure as a Service

Deployment Method

- Private Cloud
- Public Cloud
- Hybrid Cloud

The cloud business model is not new...

Essential Characteristic	Holiday Inn	Avis	Uber	Spirit Airlines
On demand self service		\checkmark	\checkmark	
Broad network access		\checkmark	\checkmark	
Resource Pooling		\checkmark	\checkmark	
Rapid Elasticity		\checkmark	\checkmark	
Measured Service				

What do you consider when you use these services?

Hybrid Cloud

 Hybrid cloud is a cloud computing environment which uses a mix of on-premises, private cloud and third-party, public cloud services with orchestration between the two platforms

Who is providing Cloud?

- Infrastructure as a Service (IaaS) providers are becoming fewer
 - Consolidations, acquisitions, business failures due to competition
 - Only the largest will have the scale to compete
 - Infrastructure software is often bundled (economies of innovation)
- Software as a Service providers are growing
 - Many are using laaS providers for infrastructure
 - They are replacing on premise software installations
 - They are disrupting all indutries

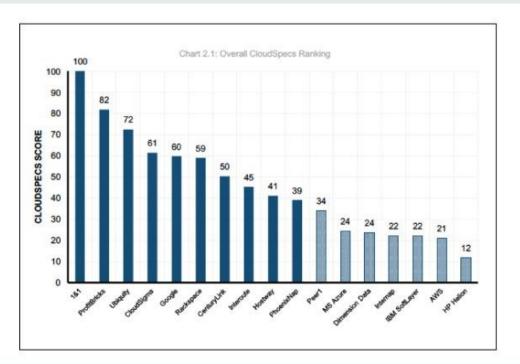
IaaS Cloud Leaders by revenue

Cloudy with a chance of revenue				
Amazon	5,516 MILLION			
IBM	\$762MILLION			
Microsoft	\$730MILLION			
Rackspace	\$534MILLION			
AliCloud	\$259MILLION			
Google	\$192MILLION			
SOURCE: IDC				

Example: Amazon (Instance and Storage Types)

Instance Family	Current Generation Instance Types
General purpose	t2.nano t2.micro t2.small t2.medium t2.large m4.large m4.xlarge m4.2xlarge m4.4xlarge m4.10xlarge m3.medium m3.large m3.xlarge m3.2xlarge
Compute optimized	c4.large c4.xlarge c4.2xlarge c4.4xlarge c4.8xlarge c3.large c3.xlarge c3.2xlarge c3.4xlarge c3.8xlarge
Memory optimized	r3.large r3.xlarge r3.2xlarge r3.4xlarge r3.8xlarge x1.32xlarge
Storage optimized	i2.xlarge i2.2xlarge i2.4xlarge i2.8xlarge d2.xlarge d2.xlarge d2.2xlarge d2.4xlarge d2.8xlarge
GPU instances	g2.2xlarge g2.8xlarge

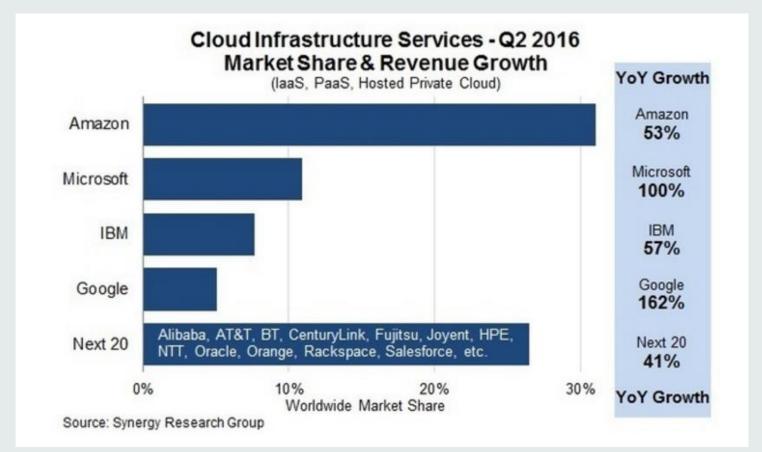
Region: US West (Oregon) +
Amazon EBS General Purpose SSD (gp2) volumes • \$0.10 per GB-month of provisioned storage
Amazon EBS Provisioned IOPS SSD (io1) volumes \$0.125 per GB-month of provisioned storage \$0.065 per provisioned IOPS-month
Amazon EBS Throughput Optimized HDD (st1) volumes • \$0.045 per GB-month of provisioned storage
Amazon EBS Cold HDD (sc1) volumes • \$0.025 per GB-month of provisioned storage Amazon EBS Snapshots to Amazon S3 • \$0.095 per GB-month of data stored

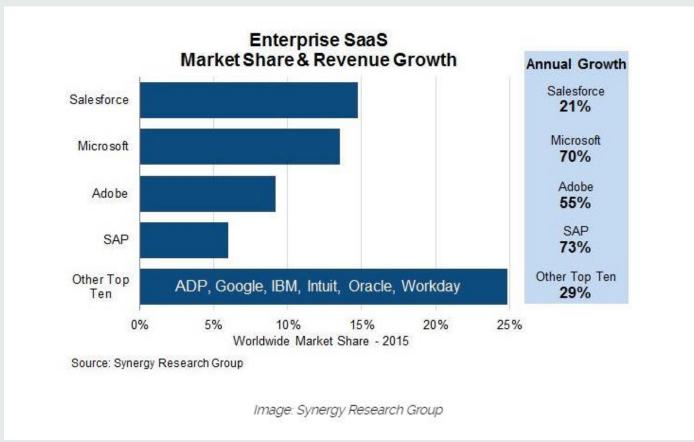

Example: Azure (Instance and Storage Types)

SKU Family	ACU/Core
Standard_A0	50
Standard_A1-4	100
Standard_A5-7	100
A8-A11	225*
D1-14	160
D1-15v2	210 - 250*
DS1-14	160
DS1-15v2	210-250*
F1-F16	210-250*
F1s-F16s	210-250*
G1-5	180 - 240*
GS1-5	180 - 240*

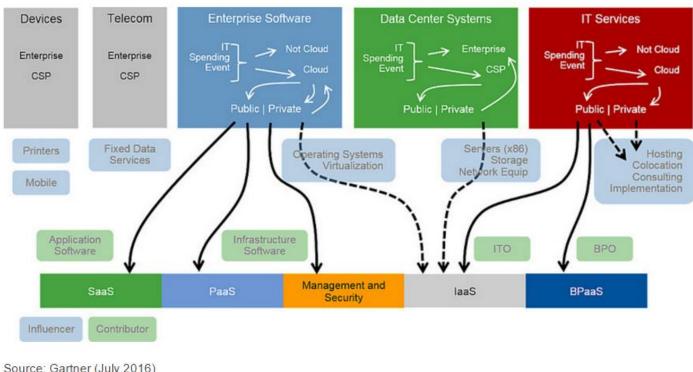
Disk Types	P10	P20	P30
Disk Size	128 GB	512 GB	1024 GB
IOPS per Disk	500	2300	5000
Throughput per Disk	100 MB/sec	150 MB/sec	200 MB/sec

IaaS Cloud Leaders by Price / Performance




Top 10 Cloud Vendor Benchmark 2016 NORTH AMERICA REPORT

Cloud Leaders by Overall Market share



SaaS Leaders my market share

"Cloud Shift" is underway

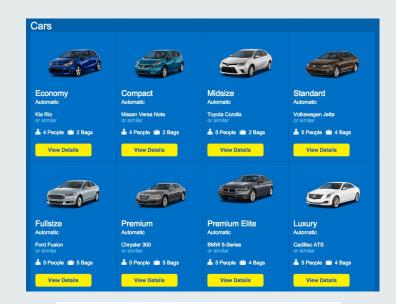
Figure 1: Shift From Traditional IT Spending to Cloud

- Gartner says by 2020 "Cloud" Shift" will affect more than \$1 Trillion in IT spending
- 2016 IT spending @ \$3.49 trillion
- During this time, "Hybrid Cloud" will be the common model

Source: Gartner (July 2016)

The Intersection

Flash in a Hybrid Cloud World


Flash and Cloud share similar characteristics...

- Both are disruptive
- The use of both are accelerating
- Both have roadmaps promising significant innovation
- Both are becoming mainstream

Intersection 1 – Product vs Service

- The cloud for the data center changes the business model
- Flash is packaged inside of other services
- The storage is not always the bottleneck
- The buyer of the flash changes
 - Buyer beware!

Intersection 2 – Moving workloads between on premise and cloud

- Your workloads may experience very different environments
- More important than ever to characterize your performance
- More important than ever to fully evaluate what you buy

In Summary

In a Hybrid world, buyer beware and keep watching!

