
Testing Controller Memory Buffer Performance
In An NVM Express SSD

Ramyakanth Edupuganti, Senior Product Research Engineer,
Dr. Stephen Bates, Senior Technical Director,

Microsemi Corporation
August 9th, 2016

Overview

•  Background

•  Controller Memory Buffers

•  High-Speed SSDs

•  Enabling Linux Support

•  Performance Results

•  Conclusions

Background
§  PCIe network and storage devices can

generate and consume several GB/s.

§  Devices have either a high performance DMA
engine, a number of exposed PCIe BARs or
both.

§  Until the Controller Memory Buffer, any high-
performance transfer of information between
two PCIe devices has required the use of a
staging buffer in system memory.

§  The bandwidth to system memory is not
compromised when high-throughput transfers
occurs between PCIe devices.

Host

RDMA
NIC

X86_64
CPU

D
R

A
M

PCIe
Switch

NVMe

PCIe
Switch

CMB RAM

NAND

Controller Memory Buffers

§  Controller Memory Buffers (CMBs) were added
to the NVM Express standard in revision 1.2

§  CMBs are PCIe BARs (or regions within a BAR)
that can be used to store either generic data or
data associated with an NVMe block command

§  With appropriate implementation, CMBs can be
made persistent across power cycles (MRAM,
poly-caps, 3DX-point, etc.,) NVMe

CMB RAM

NAND

 Metadata

 PRP/SGL

 Queues

High-Speed Solutions

•  In Direct Memory Interface
(DMI) mode, Microsemi
Flashtec NVRAM cards
achieve:

•  Sub-microsecond latency for

small access sizes

•  10 million IOPs for small

access sizes

Enabling Linux Support Features

§  Linux support has been enabled by several recent
additions to the kernel, including:

§  ZONE_DEVICE-the ability to associate a range of
memory addresses (PFNs)

§  PMEM-a ZONE_DEVICE device driver that exposes
memory region to the rest of the OS

§  DAX-a framework that allows a memory-addressable
block device to bypass the page cache

§  STRUCT PAGE SUPPORT-PMEM devices can
optionally include struct page backing for DMA

Linux
Kernel

DAX
PMEM

DAX

Zone
Device

CMB
System
Memory

User
Process

EXT4

User
Process

User
Process

Performance Results

§  The DMA engines in the RDMA
device can target the BAR on
the IOPMEM device and can
either use the mmap() on the
IOPMEM direct or mmap() files
on a DAX-mounted filesystem
as the RDMA memory regions.

§  Performance:
Write BW Read BW
4 GB/s 1.2 GB/s

RDMA
NIC

X86_64
CPU

D
R

A
M

PCIe
Switch

NVMe

PCIe
Switch

CMB RAM

NAND

Performance Results (continued)

§  Sub 3 µs read times for
small access sizes

§  CX4, RoCE, and no RDMA
switch

§  Latency rises for larger
accesses (these are
unaligned and byte
addressable)

§  Results for 4 KB are around
6 µs. This is 6 µs total, not
incremental!

512B

Conclusions

§  The Linux kernel has been adapted in preparation for new NVMs and
memory-attached NVM.

§  We are building upon prior advancements in PCIE IO memory subsystem
technology by adding new performance-enhancing features, and have
enabled IO memory as a DMA target.

§  Our example driver exposes IOMEM as both a DAX-enabled block device
and an mmap()’-able region.

§  We show good performance between PCIe devices (the datapath avoids
CPU when a PCIe switch is used).

THANKS!!

Come and visit us at booth #213
www.microsemi.com

Flash Memory Summit 2016
Santa Clara, CA

10

