
LDPC Codes: Principles and

Implementation Aspects

Osso Vahabzadeh

TexasLDPC Inc.

Flash Memory Summit 2016

Santa Clara, CA 1

Overview

Flash Memory Summit 2016

Santa Clara, CA 2

• Why Is Error Correction Needed in Flash
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes

Overview

Flash Memory Summit 2016

Santa Clara, CA 3

• Why Is Error Correction Needed in Flash
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes

NAND Flash Basics

Flash Memory Summit 2016

Santa Clara, CA 4

• Information is stored in a NAND flash cell by inducing a certain voltage
to its floating gate.

• To read the stored bit(s), the cell voltage is compared with a set of
threshold voltages and a hard-decision bit is sent out.

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 5

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 6

Threshold Voltage Distribution

Voltage

No of cells

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 7

Threshold Voltage Distribution

Voltage

No of cells

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 8

Threshold Voltage Distribution

Voltage

No of cells

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 9

Threshold Voltage Distribution

Voltage

No of cells

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 10

Threshold Voltage Distribution

Voltage

No of cells

• Cell voltages change randomly over time and with memory wear out. So read
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions
widen and shift.

• Read errors occur when distributions overlap.

Threshold Voltage Distribution with

Increasing Number of P/E Cycles

Flash Memory Summit 2016

Santa Clara, CA 11

Threshold Voltage Distribution

Voltage

No of cells

Overview

Flash Memory Summit 2016

Santa Clara, CA 12

• Why Is Error Correction Needed in Flash
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 13

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 14

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 15

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 16

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 17

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 18

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 19

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Information bits

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 20

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Information bits Systematic code

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 21

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Information bits Systematic code

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 22

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Information bits Systematic code

Parity bits

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 23

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3 𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0

𝑐6 = 𝑢2 + 𝑢3 + 𝑢4 𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0

𝑐7 = 𝑢1 + 𝑢2 + 𝑢4 𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

Information bits Systematic code

Parity bits

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 24

• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘

𝑘: Data block size 𝑛: Codeword size 𝑚 = 𝑛 − 𝑘: Number of parity bits

• Example: 𝑘 = 4, 𝑛 = 7,𝑚 = 3 → A (7, 4) block code

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3 𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0

𝑐6 = 𝑢2 + 𝑢3 + 𝑢4 𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0

𝑐7 = 𝑢1 + 𝑢2 + 𝑢4 𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

Information bits Systematic code

Parity bits

Parity check equations

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 25

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 26

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 27

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 28

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 29

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 30

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 31

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Parity-Check Matrix

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 32

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Parity-Check Matrix

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

𝑯 = 𝑷𝑡 , 𝑰(𝑛−𝑘)×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 33

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Parity-Check Matrix

𝒄 = 𝒖𝑮 = [𝒖, 𝒑]

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

𝑯 = 𝑷𝑡 , 𝑰(𝑛−𝑘)×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 34

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Parity-Check Matrix

𝒄 = 𝒖𝑮 = [𝒖, 𝒑] 𝒄𝑯𝑡 = 0

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

𝑯 = 𝑷𝑡 , 𝑰(𝑛−𝑘)×(𝑛−𝑘)

Error Correction Codes

Flash Memory Summit 2016

Santa Clara, CA 35

𝑐1 = 𝑢1
𝑐2 = 𝑢2
𝑐3 = 𝑢3
𝑐4 = 𝑢4
𝑐5 = 𝑢1 + 𝑢2 + 𝑢3
𝑐6 = 𝑢2 + 𝑢3 + 𝑢4
𝑐7 = 𝑢1 + 𝑢2 + 𝑢4

𝑐1 + 𝑐2 + 𝑐3 + 𝑐5 = 0
𝑐2 + 𝑐3 + 𝑐4 + 𝑐6 = 0
𝑐1 + 𝑐2 + 𝑐4 + 𝑐7 = 0

𝑮 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

Generator Matrix

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Parity-Check Matrix

𝒄 = 𝒖𝑮 = [𝒖, 𝒑] 𝒄𝑯𝑡 = 0 𝑮𝑯𝑡 = 0

𝑮 = 𝑰𝑘×𝑘 , 𝑷𝑘×(𝑛−𝑘)

𝑯 = 𝑷𝑡 , 𝑰(𝑛−𝑘)×(𝑛−𝑘)

Overview

Flash Memory Summit 2016

Santa Clara, CA 36

• Why Is Error Correction Needed in Flash
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 37

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 38

Parity-check matrix:

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 39

Parity-check matrix:

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 40

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 41

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 42

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 43

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 44

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 45

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 46

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 47

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 48

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

Length-4 Cycle

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 49

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

Length-6 Cycle

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

Tanner Graph Representation of

Block Codes

Flash Memory Summit 2016

Santa Clara, CA 50

Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable

nodes and check nodes

Each edge represents a ‘1’

in the 𝑯 matrix

Degree of a node is the number

of edges connected to it

A (2, 1) Trapping Set (TS)

𝑐1 : 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 : 𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

LDPC Codes

Flash Memory Summit 2016

Santa Clara, CA 51

• Linear block codes with low-density parity-check matrices

• Number of nonzeros increases linearly with the block length
(sparseness)

• Iterative message passing decoders

• Decoding complexity depends linearly on the number of
nonzeros and on block length

• The generator matrix is constructed from a sparse parity-check
matrix

Example: Gallager’s LDPC Code

Flash Memory Summit 2016

Santa Clara, CA 52

The example used by R. G. Gallager:

𝐻 =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

𝑛 = codeword length = 20
𝑑𝑣 = column degree = 3
𝑑𝑐 = row degree = 4

This code is called a regular LDPC
code.

If 𝑑𝑣 (𝑑𝑐) is not constant for all
columns (rows), the code is called
an irregular LDPC code.

QC-LDPC Matrix: Example 1



















17411675507

14411396645

16514211032

53S

Example H Matrix

r/row degree = 5

c/column degree = 3

Sc/circulant size = 211

N = Sc × r = 1055Flash Memory Summit 2016

Santa Clara, CA

QC-LDPC Matrix: Example 2

54































)1)(1(2)1(1

)1(242

12

...

:

...

...

...

rccc

r

r

I

I

I

IIII

H































01....00

:

00....10

00...01

10...00



Example H Matrix: Array LDPC code

r row/ check node degree = 5

c column/variable node degree = 3

Sc circulant size = 7

N = Sc × r = 35

Flash Memory Summit 2016

Santa Clara, CA

Overview

Flash Memory Summit 2016

Santa Clara, CA 55

• Why Is Error Correction Needed in Flash
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes

LDPC Encoding

Flash Memory Summit 2016

Santa Clara, CA 56

• For Systematic codes: 𝒄 = 𝒖, 𝒑 .

• Suppose 𝑯 = 𝑯𝒖, 𝑯𝒑 , where 𝑯𝒑 is (𝑛 − 𝑚) × 𝑛 − 𝑚 and invertible. Then

𝒄𝑯𝑡 = 0

= 𝒖, 𝒑 ×
𝑯𝑢

𝒕

𝑯𝑝
𝒕

= 𝒖𝑯𝑢
𝒕 + 𝒑𝑯𝑝

𝒕

𝒑𝑯𝑝
𝒕 = 𝒖𝑯𝑢

𝒕

𝒑 = 𝒖𝑯𝑢
𝒕 𝑯𝑝

−𝟏 𝒕

LDPC Encoding

Flash Memory Summit 2016

Santa Clara, CA 57

• For Systematic codes: 𝒄 = 𝒖, 𝒑 .

• Suppose 𝑯 = 𝑯𝒖, 𝑯𝒑 , where 𝑯𝒑 is (𝑛 − 𝑚) × 𝑛 − 𝑚 and invertible. Then

𝒄𝑯𝑡 = 0

= 𝒖, 𝒑 ×
𝑯𝑢

𝒕

𝑯𝑝
𝒕

= 𝒖𝑯𝑢
𝒕 + 𝒑𝑯𝑝

𝒕

𝒑𝑯𝑝
𝒕 = 𝒖𝑯𝑢

𝒕

𝒑 = 𝒖𝑯𝑢
𝒕 𝑯𝑝

−𝟏 𝒕

58
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

59
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

• Bit flipping is a hard decision (HD) decoding method

60
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

• Bit flipping is a hard decision (HD) decoding method

61
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

• Bit flipping is a hard decision (HD) decoding method

62
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip Flip

• Bit flipping is a hard decision (HD) decoding method

63
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip FlipFlip

Flip

Flip

• Bit flipping is a hard decision (HD) decoding method

64
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip FlipFlip

Flip

Flip Flip Flip

Flip

• Bit flipping is a hard decision (HD) decoding method

65
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip FlipFlip

Flip

Flip Flip Flip

Flip

• Bit flipping is a hard decision (HD) decoding method

66
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

• Bit flipping is a hard decision (HD) decoding method

67
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 0 = 0 0 + 0 + 0 = 0 0 + 0 + 0 = 0

• Bit flipping is a hard decision (HD) decoding method

68
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 0 = 0 0 + 0 + 0 = 0 0 + 0 + 0 = 0

• Bit flipping is a hard decision (HD) decoding method

69
Flash Memory Summit 2016

Santa Clara, CA

LDPC Decoding

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 0 = 0 0 + 0 + 0 = 0 0 + 0 + 0 = 0

Stay Stay StayStay

Stay

Stay Stay Stay

Stay

• Bit flipping is a hard decision (HD) decoding method

70

• The decoding is successful when all the parity checks are satisfied (i.e. zero).

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 1/2

• There are four types of LLR messages

71

33>

(i)

0R
(i)

Channel Detector

)(

13

i
Q >

R

n = 1

>

m = 2m = 1m = 0

L
3

2

6
P

n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 2/2

• There are four types of LLR messages

o Message from the channel to the n-th bit node,

72

nL

33>

(i)

0R
(i)

Channel Detector

)(

13

i
Q >

R

n = 1

>

m = 2m = 1m = 0

L
3

2

6
P

n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 2/2

• There are four types of LLR messages

o Message from the channel to the n-th bit node,

o Message from n-th bit node to the m-th check node or simply

73

()i

n mQ >

nL
()i

nmQ

33>

(i)

0R
(i)

Channel Detector

)(

13

i
Q >

R

n = 1

>

m = 2m = 1m = 0

L
3

2

6
P

n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 2/2

• There are four types of LLR messages

o Message from the channel to the n-th bit node,

o Message from n-th bit node to the m-th check node or simply

o Message from the m-th check node to the n-th bit node or simply

74

()i

n mQ >

()i

m nR >

nL
()i

nmQ

()i

mnR

33>

(i)

0R
(i)

Channel Detector

)(

13

i
Q >

R

n = 1

>

m = 2m = 1m = 0

L
3

2

6
P

n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 2/2

• There are four types of LLR messages

o Message from the channel to the n-th bit node,

o Message from n-th bit node to the m-th check node or simply

o Message from the m-th check node to the n-th bit node or simply

o Overall reliability information for n-th bit-node

75

()i

n mQ >

()i

m nR >

nL

nP

()i

nmQ

()i

mnR

33>

(i)

0R
(i)

Channel Detector

)(

13

i
Q >

R

n = 1

>

m = 2m = 1m = 0

L
3

2

6
P

n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 2/2

7676

Notation used in the equations

nx is the transmitted bit n ,

nL is the initial LLR message for a bit node (also called as variable node) n ,

 received from channel/detector

nP is the overall LLR message for a bit node n ,

nx is the decoded bit n (hard decision based on nP) ,

 [Frequency of P and hard decision update depends on decoding schedule]

)(n is the set of the neighboring check nodes for variable node n ,

)(m is the set of the neighboring bit nodes for check node m .

 For the i
th

iteration,
 i
nmQ is the LLR message from bit node n to check node m ,

 i
mnR is the LLR message from check node m to bit node n .

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 1/3

77

(A) check node processing: for each m and)(mn  ,

     i
mn

i

mn

i

mnR  (1)

 

 

 () 1
min

\

i i

mn mn

i
R Q

n mn m n



 



 (2)

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 2/3

78

(A) check node processing: for each m and)(mn  ,

     i
mn

i

mn

i

mnR  (1)

 

 

 () 1
min

\

i i

mn mn

i
R Q

n mn m n



 



 (2)

The sign of check node message
 i
mnR is defined as

    
 

1

\

sgn
i i

mn n m

n m n

Q






 
   
 
 (3)

where
 i
mn takes value of 1 or 1

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 2/3

79

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

80

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

(C) P Update and Hard Decision
()

()

i

n n mn

m M n

P L R


   (5)

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

81

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

(C) P Update and Hard Decision
()

()

i

n n mn

m M n

P L R


   (5)

A hard decision is taken where ˆ 0nx  if 0nP  , and ˆ 1nx  if 0nP  .

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

82

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

(C) P Update and Hard Decision
()

()

i

n n mn

m M n

P L R


   (5)

A hard decision is taken where ˆ 0nx  if 0nP  , and ˆ 1nx  if 0nP  .

If ˆ 0T

nx H  , the decoding process is finished with ˆ
nx as the decoder output;

otherwise, repeat steps (A) to (C).

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

83

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

(C) P Update and Hard Decision
()

()

i

n n mn

m M n

P L R


   (5)

A hard decision is taken where ˆ 0nx  if 0nP  , and ˆ 1nx  if 0nP  .

If ˆ 0T

nx H  , the decoding process is finished with ˆ
nx as the decoder output;

otherwise, repeat steps (A) to (C).

If the decoding process doesn’t end within some maximum iteration, stop and

output error message.

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

84

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

(C) P Update and Hard Decision
()

()

i

n n mn

m M n

P L R


   (5)

A hard decision is taken where ˆ 0nx  if 0nP  , and ˆ 1nx  if 0nP  .

If ˆ 0T

nx H  , the decoding process is finished with ˆ
nx as the decoder output;

otherwise, repeat steps (A) to (C).

If the decoding process doesn’t end within some maximum iteration, stop and

output error message.

Scaling or offset can be applied on R messages and/or Q messages for better

performance.

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

85

(B) Variable-node processing: for each n and ()m M n :

   

 \

i i

nm n m n

m n m

Q L R 



   (4)

(C) P Update and Hard Decision
()

()

i

n n mn

m M n

P L R


   (5)

A hard decision is taken where ˆ 0nx  if 0nP  , and ˆ 1nx  if 0nP  .

If ˆ 0T

nx H  , the decoding process is finished with ˆ
nx as the decoder output;

otherwise, repeat steps (A) to (C).

If the decoding process doesn’t end within some maximum iteration, stop and

output error message.

Scaling or offset can be applied on R messages and/or Q messages for better

performance.

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 3/3

The Min-Sum algorithm can be used in both hard-decision (HD) and soft-decision (SD) modes. In HD mode, LLRs have

same magnitude with lower bit resolution

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 86

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

m = 0 m = 1 m = 2

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 87

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

m = 0 m = 1 m = 2

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 88

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

m = 0 m = 1 m = 2

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 89

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−7

+3
−7

+2

−7

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 90

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−7

+3
−7

+2

−7

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−5
+2

−7

+3

−3
−7

−3

−7

m = 0 m = 1 m = 2Check node

processing:

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 91

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−7

+3
−7

+2

−7

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−5
+2

−7

+3

−3
−7

−3

−7

m = 0 m = 1 m = 2Check node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−5
+2

−7

+3

−3
−7

−3

−7

m = 0 m = 1 m = 2

+1 −3 +1 −5+2+6−4

P and HD

update:

P

LDPC Decoding Example, 1/3

Flash Memory Summit 2016

Santa Clara, CA 92

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−7

+3
−7

+2

−7

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−5
+2

−7

+3

−3
−7

−3

−7

m = 0 m = 1 m = 2Check node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−5
+2

−7

+3

−3
−7

−3

−7

m = 0 m = 1 m = 2

+1 −3 +1 −5+2+6−4

P and HD

update:

P

0 1 0 1001

HD

LDPC Decoding Example, 2/3

Flash Memory Summit 2016

Santa Clara, CA 93

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−5

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

LDPC Decoding Example, 2/3

Flash Memory Summit 2016

Santa Clara, CA 94

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−5

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−1
+2

−1

+3

−3
−5

−1

−1

m = 0 m = 1 m = 2Check node

processing:

LDPC Decoding Example, 2/3

Flash Memory Summit 2016

Santa Clara, CA 95

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−5

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−1
+2

−1

+3

−3
−5

−1

−1

m = 0 m = 1 m = 2Check node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−1
+2

−1

+3

−3
−5

−1

−1

m = 0 m = 1 m = 2

+1 +2 +7 +1+4+6−1

P and HD

update:

P

LDPC Decoding Example, 2/3

Flash Memory Summit 2016

Santa Clara, CA 96

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−5

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−1
+2

−1

+3

−3
−5

−1

−1

m = 0 m = 1 m = 2Check node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−1
+2

−1

+3

−3
−5

−1

−1

m = 0 m = 1 m = 2

+1 +2 +7 +1+4+6−1

P and HD

update:

P

0 0 0 0001

HD

LDPC Decoding Example, 3/3

Flash Memory Summit 2016

Santa Clara, CA 97

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−2

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

LDPC Decoding Example, 3/3

Flash Memory Summit 2016

Santa Clara, CA 98

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−2

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−2
+2

−1

+3

−2
−2

−2

−1

m = 0 m = 1 m = 2Check node

processing:

LDPC Decoding Example, 3/3

Flash Memory Summit 2016

Santa Clara, CA 99

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−2

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−2
+2

−1

+3

−2
−2

−2

−1

m = 0 m = 1 m = 2Check node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−2
+2

−1

+3

−2
−2

−2

−1

m = 0 m = 1 m = 2

+1 +1 +7 +1+3+7+1

P and HD

update:

P

LDPC Decoding Example, 3/3

Flash Memory Summit 2016

Santa Clara, CA 100

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

−2

+3
−1

+2

−2

+9
+3

+5

+8

m = 0 m = 1 m = 2Variable node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−2
+2

−1

+3

−2
−2

−2

−1

m = 0 m = 1 m = 2Check node

processing:

−7

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

+3 +8 +2+5+9+3

+3

−2
+2

−1

+3

−2
−2

−2

−1

m = 0 m = 1 m = 2

+1 +1 +7 +1+3+7+1

P and HD

update:

P

0 0 0 0000

HD

Overview

Flash Memory Summit 2016

Santa Clara, CA 101

• Why Is Error Correction Needed in Flash
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes

Decoder Architectures

• Parallelization is good-but comes at a steep cost for LDPC decoders.

• Fully Parallel Architecture:

- All the check updates in one clock cycle and all the bit updates in one more

clock cycle.

- Huge Hardware resources and routing congestion.

• Serial Architecture:

- Check updates and bit updates in a serial fashion.

- Huge memory requirement. Memory in critical path.

- Very low throughput

102

Flash Memory Summit 2016

Santa Clara, CA

Semi-parallel Architectures

• Check updates and bit updates using several units.

• Partitioned memory by imposing structure on H matrix.

• Practical solution for most of the applications.

• There are several semi-parallel architectures proposed.

• Complexity differs based on architecture and scheduling.

103

Flash Memory Summit 2016

Santa Clara, CA

Layered Decoder Architecture

104

Flash Memory Summit 2016

Santa Clara, CA

• Optimized Layered Decoding with algorithm transformations for reduced memory and computations

𝑅𝑙,𝑛
0 = 0, 𝑃𝑛 = 𝐿𝑛

0 [Initialization for each new received data frame]

∀𝑖 = 1,2, . . . , 𝑖𝑡𝑚𝑎𝑥 [Iteration loop]

∀𝑙 = 1,2, . . . , 𝑗 [Layer loop]

∀𝑛 = 1,2, . . . , 𝑘 [Block column loop]

𝑄𝑙,𝑛
𝑖 𝑆 𝑙,𝑛

= 𝑃𝑛
𝑆 𝑙,𝑛 − 𝑅𝑙,𝑛

𝑖−1 , (𝑄new = 𝑃new − 𝑅old)

𝑅𝑙,𝑛
𝑖 = 𝑓 𝑄𝑙,𝑛′

𝑖 𝑆 𝑙,𝑛′
, ∀𝑛′ = 1,2, . . . , 𝑑𝑐𝑙 − 1

(𝑅new = 𝑓 𝑄new = R_Select(FS, Qsign))

𝑃𝑛
𝑆 𝑙,𝑛 = 𝑄𝑙,𝑛

𝑖 𝑆 𝑙,𝑛
+ 𝑅𝑙,𝑛

𝑖 , (𝑃 = 𝑄old + 𝑅new)

𝑃new is then computed by applying delta shift on 𝑃

• 𝑄 and 𝑅 messages are computed for each 𝑝 × 𝑝 block of 𝐻 where 𝑝 is the parallelization

• 𝑓 ∙ is the check node processing unit

• 𝑆 𝑙, 𝑛′ is the upward (right) shift for block row (layer) 𝑙 and block column 𝑛′

• 𝑑𝑐𝑙 is the degree of layer 𝑙

Block Serial Layered Decoder

Architecture with On-the-Fly Computation

105

Flash Memory Summit 2016

Santa Clara, CA

See [8, P1-P6] and references therein for more

details on features and implementation.

• Proposed for irregular H matrices

• Goal: minimize memory and re-computations by employing

just in-time scheduling

• Advantages compared to other architectures:

1) Q (or L/P/Q) memory can be used to store L/Q/P

instead of 3 separate memories- memory is managed

at circulant level as at any time for a given circulant we

need only L or Q or P.

2) Only one shifter.

3) Value-reuse is effectively used for both Rnew and Rold

4) Low complexity data path design-with no redundant

data path operations.

5) Low complexity CNU design.

6) Out-of-order processing at both layer and circulant

level for all the processing steps such as Rnew and PS

processing to eliminate the pipeline and memory

access stall cycles.

Data Flow Diagram

106

Flash Memory Summit 2016

Santa Clara, CA

R Selection for R NEW operates out of order to

feed the data for PS processing of the next layer.

Illustration for out-of-order

processing

Flash Memory Summit 2016

Santa Clara, CA 107

• Rate 2/3 code. 8 Layers, 24 block columns. dv, column weight varies from 2 to 6. dc, row weight is 10 for all

the layers.

• Non-zero circulants are numbered from 1 to 80. No layer re-ordering in processing. Out-of-order processing

for Rnew. Out-of-order processing for Partial state processing.

• Illustration for 2nd iteration with focus on PS processing of 2nd layer.

• Rold processing is based on the circulant order 11 16 17 18 20 12 13 14 15 19 and is

indicated in green.

• Rnew is based on the circulant order 72 77 78 58 29 3 5 6 8 10 and is indicated in blue.

• Q memory, HD memory access addresses are based on the block column index to which the green

circulants are connected to.

• Q sign memory access address is based on green circulant number.

• Superscript indicates the clock cycle number counted from 1 at the beginning of layer 2 processing.

Out-of-order layer processing for R

Selection

Flash Memory Summit 2016

Santa Clara, CA 108

• Normal practice is to compute Rnew messages for each layer after CNU PS processing.

• Here the execution of R new messages of each layer is decoupled from the execution of corresponding layer’s CNU

PS processing. Rather than simply generating Rnew messages per layer, they are computed on basis of circulant

dependencies.

• R selection is out-of-order so that it can feed the data required for the PS processing of the second layer. For

instance Rnew messages for circulant 29 which belong to layer 3 are not generated immediately after layer 3 CNU

PS processing .

• Rather, Rnew for circulant 29 is computed when PS processing of circulant 20 is done as circulant 29 is a dependent

circulant of circulant of 20.

• Similarly, Rnew for circulant 72 is computed when PS processing of circulant 11 is done as circulant 72 is a

dependent circulant of circulant of 11.

• Here the instruction/computation is computed at precise moment when the result is needed!!!

Out-of-order block processing for

Partial State

Flash Memory Summit 2016

Santa Clara, CA 109

• Re-ordering of block processing . While processing layer 2, the blocks which depend on layer 1

will be processed last to allow for the pipeline latency.

• In the above example, the pipeline latency can be 5.

• The vector pipeline depth is 5. So no stall cycles are needed while processing the layer 2 due to

the pipelining. In other implementations, the stall cycles are introduced – which will effectively

reduce the throughput by a huge margin.

• The operations in one layer are sequenced such that the block that has dependent data available

for the longest time is processed first.

Memory organization

• Q memory width is equal to circulant size * 8 bits and depth is number of block columns.

• HD memory width is equal to circulant size * 1 bits and depth is number of block columns.

• Qsign memory width is equal to circulant size * 1 bits and depth is number of non-zero

circulants in H-matrix.

• FS memory width is equal to circulant size * (15 bits (= 4 bits for Min1 + 4 bits for Min2 index

+ 1 bit + 6 bits for Min1 index).

• FS memory access is expensive and number of accesses can be reduced with scheduling.

• For the case of decoder for regular mother matrices (no 0 blocks and no OOP): FS access is

needed one time for Rold for each layer; is needed one time for R new for each layer.

• For the case of decoder for irregular mother matrices: FS access is needed one time for

Rold for each layer; is needed one time for R new for each non-zero circulant in each layer.

110

Flash Memory Summit 2016

Santa Clara, CA

From Throughput Requirements to

Design Specification

• Requirements

- Throughput in bits per sec.

- BER

- Latency

• BER would dictate Number of Iterations and degree profile (check node degrees and

variable node degrees).

• Circulant Size (Sc)

• Number of Circulants processed in one clock (NSc)

• Number of bits processed per clock = Throughput/clock frequency

• Sc * NSc = Nb * Iterations * Average Variable Node degree

- Sc is usually set to less than 128 for smaller router.

111

Flash Memory Summit 2016

Santa Clara, CA

References
1. Y. Cai, E. F. Haratsch, et al., “Threshold Voltage Distribution in MLC NAND Flash Memory:

Characterization, Analysis, and Modeling,” Proceedings of the Conference on Design, Automation and Test
in Europe. EDA Consortium, 2013.

2. R. Tanner, “A recursive approach to low-complexity codes,” IEEE Trans. on info. Theory, 27.5, pp. 533-
547, 1981.

3. R. G. Gallager, “Low density parity check codes,” IRE Trans. Info. Theory, IT-8:21-28, Jan 1962.

4. R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

5. W. Ryan and S. Lin, Channel codes: classical and modern, Cambridge University Press, 2009.

6. Levine, et. al., “Implementation of near Shannon limit error-correcting codes using reconfigurable
hardware,” IEEE Field-Programmable Custom Computing Machine, 2000.

7. E. Yeo, “VLSI architectures for iterative decoders in magnetic recording channels,” IEEE Trans. Magnetics,
vol. 37, no.2, pp. 748-55, March 2001.

8. K. K. Gunnam, “LDPC Decoding: VLSI Architectures and Implementations,” Flash Memory Summit, 2013.

112

Flash Memory Summit 2016

Santa Clara, CA

Some of these slides are used from other references with permission.

References

Several features presented in this tutorial are covered by the following

patents by Texas A&M University System (TAMUS):

[P1] U.S. Patent 8359522, Low density parity check decoder for regular LDPC codes.

[P2] U.S. Patent 8418023, Low density parity check decoder for irregular LDPC codes.

[P3] U.S. Patent 8555140, Low density parity check decoder for irregular LDPC codes.

[P4] U.S. Patent 8656250,Low density parity check decoder for regular LDPC codes.

[P5] U.S. Patent 9112530, Low density parity check decoder.

[P6] U.S. Patent 20150311917, Low density parity check decoder.

113

Flash Memory Summit 2016

Santa Clara, CA

Some of these slides are used from other references with permission.

