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• Information is stored in a NAND flash cell by inducing a certain voltage 
to its floating gate.

• To read the stored bit(s), the cell voltage is compared with a set of 
threshold voltages and a hard-decision bit is sent out.



• Cell voltages change randomly over time and with memory wear out. So read 
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions 
widen and shift.
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• Cell voltages change randomly over time and with memory wear out. So read 
voltage is a random variable.

• As the number of P/E cycles increases, the threshold voltage distributions 
widen and shift.

• Read errors occur when distributions overlap. 
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• Linear Block codes: 𝑢1, … , 𝑢𝑘 → 𝑐1, … , 𝑐𝑛 , 𝑛 > 𝑘
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Parity-check matrix:

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
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Parity-check matrix:

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it

Length-4 Cycle

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it

Length-6 Cycle

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0
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Parity-check matrix:

𝑣7

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

𝑯 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Variable nodes: Left nodes

Check nodes: Right nodes

Edges connect variable 

nodes and check nodes

Each edge represents a ‘1’ 

in the 𝑯 matrix

Degree of a node is the number 

of edges connected to it

A (2, 1) Trapping Set (TS)

𝑐1 :  𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 = 0

𝑐2 :  𝑣2 + 𝑣3 + 𝑣4 + 𝑣6 = 0

𝑐3 : 𝑣1 + 𝑣2 + 𝑣4 + 𝑣7 = 0
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• Linear block codes with low-density parity-check matrices

• Number of nonzeros increases linearly with the block length 
(sparseness)

• Iterative message passing decoders

• Decoding complexity depends linearly on the number of 
nonzeros and on block length

• The generator matrix is constructed from a sparse parity-check 
matrix



Example: Gallager’s LDPC Code
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The example used by R. G. Gallager: 

𝐻 =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

𝑛 = codeword length = 20
𝑑𝑣 = column degree = 3
𝑑𝑐 = row degree = 4

This code is called a regular LDPC 
code.

If 𝑑𝑣 (𝑑𝑐) is not constant for all 
columns (rows), the code is called 
an irregular LDPC code.



QC-LDPC Matrix: Example 1



















17411675507

14411396645

16514211032

53S

Example H Matrix

r/row degree = 5

c/column degree = 3

Sc/circulant size  = 211

N = Sc × r = 1055Flash Memory Summit 2016

Santa Clara, CA



QC-LDPC Matrix: Example 2
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





























)1)(1(2)1(1

)1(242

12

...

:

...

...

...

rccc

r

r

I

I

I

IIII

H































01....00

:

00....10

00...01

10...00



Example H Matrix: Array LDPC code

r row/ check node degree = 5

c column/variable node degree = 3

Sc circulant size = 7

N = Sc × r = 35

Flash Memory Summit 2016

Santa Clara, CA
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• Why Is Error Correction Needed in Flash 
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes



LDPC Encoding
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• For Systematic codes: 𝒄 = 𝒖, 𝒑 .

• Suppose 𝑯 = 𝑯𝒖, 𝑯𝒑 , where 𝑯𝒑 is (𝑛 − 𝑚) × 𝑛 − 𝑚 and invertible. Then

𝒄𝑯𝑡 = 0

= 𝒖, 𝒑 ×
𝑯𝑢

𝒕

𝑯𝑝
𝒕

= 𝒖𝑯𝑢
𝒕 + 𝒑𝑯𝑝

𝒕

𝒑𝑯𝑝
𝒕 = 𝒖𝑯𝑢

𝒕

𝒑 = 𝒖𝑯𝑢
𝒕 𝑯𝑝

−𝟏 𝒕
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• For Systematic codes: 𝒄 = 𝒖, 𝒑 .

• Suppose 𝑯 = 𝑯𝒖, 𝑯𝒑 , where 𝑯𝒑 is (𝑛 − 𝑚) × 𝑛 − 𝑚 and invertible. Then

𝒄𝑯𝑡 = 0

= 𝒖, 𝒑 ×
𝑯𝑢

𝒕

𝑯𝑝
𝒕

= 𝒖𝑯𝑢
𝒕 + 𝒑𝑯𝑝

𝒕

𝒑𝑯𝑝
𝒕 = 𝒖𝑯𝑢

𝒕

𝒑 = 𝒖𝑯𝑢
𝒕 𝑯𝑝

−𝟏 𝒕
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip Flip

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip FlipFlip

Flip

Flip

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip FlipFlip

Flip

Flip Flip Flip

Flip

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 1/2

1

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 1 = 1 0 + 1 + 0 = 1 1 + 0 + 0 = 1

Flip Flip FlipFlip

Flip

Flip Flip Flip

Flip

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 0 = 0 0 + 0 + 0 = 0 0 + 0 + 0 = 0

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 0 = 0 0 + 0 + 0 = 0 0 + 0 + 0 = 0

• Bit flipping is a hard decision (HD) decoding method
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LDPC Decoding 

(The Bit-Flipping Algorithm), 2/2

0

n = 1n = 0 n = 2 n = 3 n = 4 n = 5 n = 6

0 0 0000

m = 0 m = 1 m = 2

0 + 0 + 0 = 0 0 + 0 + 0 = 0 0 + 0 + 0 = 0

Stay Stay StayStay

Stay

Stay Stay Stay

Stay

• Bit flipping is a hard decision (HD) decoding method
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• The decoding is successful when all the parity checks are satisfied (i.e. zero).

Flash Memory Summit 2016

Santa Clara, CA

Message Passing Decoding of LDPC

Codes, 1/2



• There are four types of LLR messages

71

33>

(i)

0R
(i)

Channel Detector

)(

13

i
Q >

R

n = 1

>

m =  2m = 1m = 0
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Message Passing Decoding of LDPC

Codes, 2/2



• There are four types of LLR messages

o Message from the channel to the n-th bit node,

72

nL
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Message Passing Decoding of LDPC

Codes, 2/2



• There are four types of LLR messages

o Message from the channel to the n-th bit node,

o Message from n-th bit node to the m-th check node              or simply

73
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Message Passing Decoding of LDPC

Codes, 2/2



• There are four types of LLR messages

o Message from the channel to the n-th bit node,

o Message from n-th bit node to the m-th check node              or simply

o Message from the m-th check node to the n-th bit node            or simply 
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Message Passing Decoding of LDPC

Codes, 2/2



• There are four types of LLR messages

o Message from the channel to the n-th bit node,

o Message from n-th bit node to the m-th check node              or simply

o Message from the m-th check node to the n-th bit node            or simply 

o Overall reliability information for n-th bit-node

75

( )i

n mQ >
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m nR >

nL

nP
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nmQ
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mnR
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Message Passing Decoding of LDPC

Codes, 2/2
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Notation used in the equations 

nx  is the transmitted bit n , 

nL  is the initial LLR message for a bit node (also called as variable node) n ,  

        received from channel/detector 

nP  is the overall LLR message for a bit node n , 

nx  is the decoded bit n (hard decision based on nP ) , 

 [Frequency of P and hard decision update depends on decoding schedule] 

)(n is the set of the neighboring check nodes for variable node n ,  

)(m is the set of the neighboring bit nodes for check node m .   

   For the i
th 

iteration,  
 i
nmQ  is the LLR message from bit node n  to check node m , 

 i
mnR  is the LLR message from check node m  to bit  node n .  

Flash Memory Summit 2016

Santa Clara, CA

The Min-Sum Algorithm, 1/3
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(A) check node processing: for each m and )(mn  , 

     i
mn

i

mn

i

mnR                                        (1) 

 

 

 ( ) 1
min

\

i i

mn mn

i
R Q

n mn m n



 



                   (2) 
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The Min-Sum Algorithm, 2/3
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(A) check node processing: for each m and )(mn  , 

     i
mn

i

mn

i

mnR                                        (1) 

 

 

 ( ) 1
min

\

i i

mn mn

i
R Q

n mn m n



 



                   (2) 

The sign of check node message
 i
mnR  is defined as  

    
 

1

\

sgn
i i

mn n m

n m n

Q






 
   
 
                                 (3)   

where
 i
mn  takes value of 1  or  1  

Flash Memory Summit 2016
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The Min-Sum Algorithm, 2/3
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(B) Variable-node processing: for each n  and ( )m M n : 

 
   

 \

i i

nm n m n

m n m

Q L R 



                                (4) 
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The Min-Sum Algorithm, 3/3
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(B) Variable-node processing: for each n  and ( )m M n : 

 
   

 \

i i

nm n m n

m n m

Q L R 



                                (4) 

 

(C) P Update and Hard Decision 
( )

( )

i

n n mn

m M n

P L R


                     (5) 
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The Min-Sum Algorithm, 3/3
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(B) Variable-node processing: for each n  and ( )m M n : 

 
   

 \

i i

nm n m n

m n m

Q L R 



                                (4) 

 

(C) P Update and Hard Decision 
( )
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The Min-Sum algorithm can be used in both hard-decision (HD) and soft-decision (SD) modes. In HD mode, LLRs have 

same magnitude with lower bit resolution
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• Why Is Error Correction Needed in Flash 
Memories?

• Error Correction Codes Fundamentals

• Low-Density Parity-Check (LDPC) Codes

• LDPC Encoding and Decoding Methods

• Decoder Architectures for LDPC Codes



Decoder Architectures

• Parallelization is good-but comes at a steep cost for LDPC decoders.

• Fully Parallel Architecture:

- All the check updates in one clock cycle and all the bit updates in one more

clock cycle.

- Huge Hardware resources and routing congestion.

• Serial Architecture:

- Check updates and bit updates in a serial fashion.

- Huge memory requirement. Memory in critical path.

- Very low throughput
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Semi-parallel Architectures

• Check updates and bit updates using several units.

• Partitioned memory by imposing structure on H matrix.

• Practical solution for most of the applications.

• There are several semi-parallel architectures proposed.

• Complexity differs based on architecture and scheduling.
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Layered Decoder Architecture
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• Optimized Layered Decoding with algorithm transformations for reduced memory and computations

𝑅𝑙,𝑛
0 = 0, 𝑃𝑛 = 𝐿𝑛

0 [ Initialization for each new received data frame ]

∀𝑖 = 1,2, . . . , 𝑖𝑡𝑚𝑎𝑥 [ Iteration loop ]

∀𝑙 = 1,2, . . . , 𝑗 [ Layer loop ]

∀𝑛 = 1,2, . . . , 𝑘 [ Block column loop ] 

𝑄𝑙,𝑛
𝑖 𝑆 𝑙,𝑛

= 𝑃𝑛
𝑆 𝑙,𝑛 − 𝑅𝑙,𝑛

𝑖−1 , (𝑄new = 𝑃new − 𝑅old)

𝑅𝑙,𝑛
𝑖 = 𝑓 𝑄𝑙,𝑛′

𝑖 𝑆 𝑙,𝑛′
, ∀𝑛′ = 1,2, . . . , 𝑑𝑐𝑙 − 1

(𝑅new = 𝑓 𝑄new = R_Select(FS, Qsign))

𝑃𝑛
𝑆 𝑙,𝑛 = 𝑄𝑙,𝑛

𝑖 𝑆 𝑙,𝑛
+ 𝑅𝑙,𝑛

𝑖 ,    (𝑃 = 𝑄old + 𝑅new)

𝑃new is then computed by applying delta shift on 𝑃

• 𝑄 and 𝑅 messages are computed for each 𝑝 × 𝑝 block of 𝐻 where 𝑝 is the parallelization

• 𝑓 ∙ is the check node processing unit

• 𝑆 𝑙, 𝑛′ is the upward (right) shift for block row (layer) 𝑙 and block column 𝑛′

• 𝑑𝑐𝑙 is the degree of layer 𝑙



Block Serial Layered Decoder 

Architecture with On-the-Fly Computation 
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See [8, P1-P6] and references therein for more 

details on features and implementation.

• Proposed for irregular H matrices

• Goal: minimize memory and re-computations by employing 

just in-time scheduling

• Advantages compared to other architectures:

1) Q (or L/P/Q) memory can be used to store L/Q/P 

instead of 3 separate memories- memory is managed 

at circulant level as at any time for a given circulant we 

need only L or Q or P.

2) Only one shifter.

3) Value-reuse is effectively used for both Rnew and Rold

4) Low complexity data path design-with no redundant 

data path operations.

5) Low complexity CNU design.

6) Out-of-order processing at both layer and circulant 

level for all the processing steps such as Rnew and PS 

processing to eliminate the pipeline and memory 

access stall cycles.



Data Flow Diagram

106

Flash Memory Summit 2016

Santa Clara, CA

R Selection for R NEW operates out of order to 

feed the data for PS processing of the next layer.



Illustration for out-of-order 

processing
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• Rate 2/3 code. 8 Layers, 24 block columns. dv, column weight varies from 2 to 6. dc, row weight is 10 for all 

the layers.

• Non-zero circulants are numbered from 1 to 80. No layer re-ordering in processing. Out-of-order processing 

for Rnew. Out-of-order processing for Partial state processing.

• Illustration for 2nd iteration with focus on PS processing of 2nd layer.

• Rold processing is based on the circulant order 11    16    17    18    20    12    13    14    15    19   and is 

indicated in  green.

• Rnew is based on the circulant order 72  77  78  58  29  3  5  6  8  10 and is indicated in blue.

• Q memory, HD memory access addresses are based on the block column index to which the green 

circulants are connected to. 

• Q sign memory access address is based on green circulant number.

• Superscript indicates the clock cycle number counted from 1 at the beginning of layer 2 processing.



Out-of-order layer processing for R 

Selection
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• Normal practice is to compute Rnew messages for each layer after CNU PS processing.

• Here the execution of R new messages of each layer is decoupled from the execution of corresponding layer’s CNU 

PS processing. Rather than simply generating Rnew messages per layer, they are computed on basis of circulant 

dependencies.

• R selection is out-of-order so that it can feed the data required for the PS processing of the second layer. For 

instance Rnew messages for circulant 29 which belong to layer 3 are not generated immediately after layer 3 CNU 

PS processing . 

• Rather, Rnew for circulant 29 is computed when PS processing of circulant 20 is done as circulant 29 is a dependent 

circulant of circulant of 20.

• Similarly, Rnew for circulant 72 is computed when PS processing of circulant 11 is done as circulant 72 is a 

dependent circulant of circulant of 11.

• Here the instruction/computation is computed at precise moment when the result is needed!!!



Out-of-order block processing for 

Partial State
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• Re-ordering of block processing . While processing layer 2, the blocks which depend on layer 1 

will be processed last to allow for the pipeline latency.

• In the above example, the pipeline latency can be 5.

• The vector pipeline depth is 5. So no stall cycles are needed while processing the layer 2 due to 

the pipelining. In other implementations, the stall cycles are introduced – which will effectively 

reduce the throughput by a huge margin.

• The operations in one layer are sequenced such that the block that has dependent data available 

for the longest time is processed first.



Memory organization

• Q memory width is equal to circulant size * 8 bits and depth is number of block columns.

• HD memory width is equal to circulant size * 1 bits and depth is number of block columns.

• Qsign memory width is equal to circulant size * 1 bits and depth is number of non-zero 

circulants in H-matrix.

• FS memory width is equal to circulant size * (15 bits (= 4 bits for Min1 + 4 bits for Min2 index 

+ 1 bit + 6 bits for Min1 index).

• FS memory access is expensive and number of accesses can be reduced with scheduling.

• For the case of decoder for regular mother matrices (no 0 blocks and no OOP): FS access is 

needed one time for Rold for each layer; is needed one time for R new for each layer.

• For the case of decoder for irregular mother matrices: FS access is needed one time for 

Rold for each layer; is needed one time for R new for each non-zero circulant in each layer.
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From Throughput Requirements to 

Design Specification 

• Requirements

- Throughput in bits per sec.

- BER

- Latency 

• BER would dictate Number of Iterations and degree profile (check node degrees and 

variable node degrees).

• Circulant Size (Sc)

• Number of Circulants processed in one clock (NSc)

• Number of bits processed per clock = Throughput/clock frequency

• Sc * NSc = Nb * Iterations * Average Variable Node degree

- Sc is usually set to less than 128 for smaller router.
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