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Original Paper (II) 
n  Presented at ACM/IEEE MICRO Conference in Dec 2015. 

n  Full paper for details: 
q  Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei 

Wu, and Onur Mutlu, 
"ThyNVM: Enabling Software-Transparent Crash 
Consistency in Persistent Memory Systems" 
Proceedings of the 
48th International Symposium on Microarchitecture (MICRO), 
Waikiki, Hawaii, USA, December 2015.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
[Poster (pptx) (pdf)]  
[Source Code]  

q  https://users.ece.cmu.edu/~omutlu/pub/ThyNVM-transparent-
crash-consistency-for-persistent-memory_micro15.pdf  
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The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processor 
and caches 

Main Memory Storage (SSD/HDD) 



Limits of Charge Memory 
n  Difficult charge placement and control 

q  Flash: floating gate charge 
q  DRAM: capacitor charge, transistor leakage 

n  Reliable sensing becomes difficult as charge 
storage unit size reduces 
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Emerging NVM Technologies 
n  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 

n  Example: Phase Change Memory 
q  Data stored by changing phase of material  
q  Data read by detecting material’s resistance 
q  Expected to scale to 9nm (2022 [ITRS]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have (many) shortcomings 
q  Can they be enabled to replace/augment/surpass DRAM? 
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Promising NVM Technologies 
n  PCM 

q  Inject current to change material phase 
q  Resistance determined by phase 

n  STT-MRAM 
q  Inject current to change magnet polarity 
q  Resistance determined by polarity 

n  Memristors/RRAM/ReRAM 
q  Inject current to change atomic structure 
q  Resistance determined by atom distance 
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NVM as Main Memory Replacement 
n  Very promising 

q  persistence, high capacity, OK latency, low idle power 

n  Can enable merging of memory and storage 

n  Two example works that show benefits 
q  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
q  Kultursay, Kandemir, Sivasubramaniam, Mutlu, 

“Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative,” ISPASS 2013. 
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Two Example Works 
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Architected STT-MRAM as Main Memory 
n  4-core, 4GB main memory, multiprogrammed workloads 
n  ~6% performance loss, ~60% energy savings vs. DRAM 
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 



A More Viable Approach: Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

NVM
Ctrl DRAM NVM Type X 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



Some Opportunities with Emerging Technologies 

n  Merging of memory and storage 
q  e.g., a single interface to manage all data 

n  New applications 
q  e.g., ultra-fast checkpoint and restore 

n  More robust system design 
q  e.g., reducing data loss 

n  Processing tightly-coupled with memory 
q  e.g., enabling efficient search and filtering 

12 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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PCM, STT-RAM 
NVM	

Non-vola@le	memories	combine	
characteris@cs	of	memory	and	storage	



Coordinated Memory and Storage with NVM (I) 
n  The traditional two-level storage model is a bottleneck with NVM 

q  Volatile data in memory à a load/store interface 
q  Persistent data in storage à a file system interface 
q  Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores 
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Coordinated Memory and Storage with NVM (II) 

n  Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data 
q  Improves both energy and performance 
q  Simplifies programming model as well 
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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Performance Benefits of Persistent Memory 
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Energy Benefits of Persistent Memory 
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On Persistent Memory Benefits & Challenges 

n  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and 
Onur Mutlu, 
"A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory" 
Proceedings of the 5th Workshop on Energy-Efficient Design 
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf) 
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The Persistent Memory Manager (PMM) 
n  Exposes a load/store interface to access persistent data 

q  Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data  

n  Manages data placement, location, persistence, security 
q  To get the best of multiple forms of storage 

n  Manages metadata storage and retrieval 
q  This can lead to overheads that need to be managed 

n  Exposes hooks and interfaces for system software 
q  To enable better data placement and management decisions 

n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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The Persistent Memory Manager (PMM) 
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.
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One Key Challenge 

n  How to ensure consistency of system/data if all 
memory is persistent?  

n  Two extremes 
q  Programmer transparent: Let the system handle it 
q  Programmer only: Let the programmer handle it  

n  Many alternatives in-between…   

23 



CHALLENGE:	CRASH	CONSISTENCY	

	
	
	
	
	
	
	
	
	
	

System	crash	can	result	in		
permanent	data	corrup@on	in	NVM	

24	

Persistent	Memory	System	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin { 
     Insert a new node; 
} AtomicEnd; 

Limits	adop@on	of	NVM	
Have	to	rewrite	code	with	clear	par@@on		
between	vola@le	and	non-vola@le	data	

Burden	on	the	programmers	
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OUR	APPROACH:	ThyNVM	
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Goal:  
Software-transparent crash consistency 

in persistent memory systems 



	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	
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•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoin7ng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoin7ng	latency	

•  Adapts	to	DRAM	and	NVM	characteris7cs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based  
checkpointing mechanism 



	
	
	
	
	
	
	
	
	
	

OUTLINE	
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Crash Consistency Problem 

Current Solutions 

ThyNVM 

Evaluation 

Conclusion 



	
	
	
	
	
	
	
	
	
	

CRASH	CONSISTENCY	PROBLEM	
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Add a node to a linked list 

1.	Link	to	next	2.	Link	to	prev	

System	crash	can	result	in		
inconsistent	memory	state	



	
	
	
	
	
	
	
	
	
	

OUTLINE	
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Crash Consistency Problem 

Current Solutions 

ThyNVM 

Evaluation 

Conclusion 



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void hashtable_update(hashtable_t* ht, 
               void *key, void *data) 
{ 
   list_t* chain = get_chain(ht, key); 
   pair_t* pair; 
   pair_t updatePair; 
   updatePair.first = key; 
   pair = (pair_t*) list_find(chain,  
               &updatePair); 
   pair->second = data; 
} 

Example Code 
update a node in a persistent hash table  

Explicit	interfaces	to	manage	consistency	
– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara@on	of	persistent	components	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara@on	of	persistent	components	

Need	a	new	implementa@on	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara@on	of	persistent	components	

Need	a	new	implementa@on	

Third	party	code		
can	be	inconsistent	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara@on	of	persistent	components	

Need	a	new	implementa@on	

Third	party	code		
can	be	inconsistent	

Prohibited	
Opera@on	

Burden	on	the	programmers	



	
	
	
	
	
	
	
	
	
	

OUTLINE	
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Crash Consistency Problem 

Current Solutions 

ThyNVM 

Evaluation 

Conclusion 



	
	
	
	
	
	
	
	
	
	

OUR	GOAL	
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Software transparent consistency  
in persistent memory systems 

•  Execute	legacy	applica$ons		
•  Reduce	burden	on	programmers		

•  Enable	easier	integra$on	of	NVM	



NO	MODIFICATION		
IN	THE	CODE	

void hashtable_update(hashtable_t* ht, 
               void *key, void *data) 
{ 
list_t* chain = get_chain(ht, key); 
pair_t* pair; 
pair_t updatePair; 
updatePair.first = key; 
pair = (pair_t*) list_find(chain,  
               &updatePair); 
pair->second = data; 
} 



	
	
	
	
	
	
	
	
	
	

RUN	THE	EXACT	SAME	CODE…	

Persistent	Memory	System	

So`ware	transparent		
memory	crash	consistency	
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void hashtable_update(hashtable_t* ht, 
               void *key, void *data){ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) list_find(chain,  

         &updatePair); 
  pair->second = data; 
} 



	
	
	
	
	
	
	
	
	
	

ThyNVM	APPROACH	

Running 

Epoch 0	 Epoch 1	

time	

Checkpoin@ng Running Checkpoin@ng 
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Periodic checkpointing of data  
managed by hardware 

Transparent	to	applica@on	and	system	



	
	
	
	
	
	
	
	
	
	

CHECKPOINTING	OVERHEAD	

Running 

Epoch 0	 Epoch 1	

time	

Checkpoin@ng Running Checkpoin@ng 
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1. Metadata overhead 

Working	loca@on	 Checkpoint	loca@on	
X	 X’	
Y	 Y’	

Metadata	Table	

2. Checkpointing latency 



	
	
	
	
	
	
	
	
	
	

1.	METADATA	AND	
CHECKPOINTING	GRANULARITY	

PAGE	 CACHE	BLOCK	

One	Entry	Per	Page	
Small	Metadata	

One	Entry	Per	Block	
Huge	Metadata	
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PAGE	
GRANULARITY	

BLOCK	
GRANULARITY	

Working	loca@on	 Checkpoint	loca@on	
X	 X’	
Y	 Y’	
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2.	LATENCY	AND	LOCATION	
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DRAM-BASED	WRITEBACK	

Long	latency	of	wri@ng	back	data	to	NVM	

DRAM	 NVM	

Working	loca@on	 Checkpoint	loca@on	
X	 X’	
1.	Writeback	data	

from	DRAM	

2.	Update	the	
metadata	table	



	
	
	
	
	
	
	
	
	
	

2.	LATENCY	AND	LOCATION	
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NVM-BASED	REMAPPING	

Short	latency	in	NVM-based	remapping	

DRAM	 NVM	

Working	loca@on	 Checkpoint	loca@on	
Y	 X	

1.  No	copying		
of	data	

2.	Update	the	
metadata	table	

3.	Write	in	a		
new	loca7on		



	
	
	
	
	
	
	
	
	
	

ThyNVM	KEY	MECHANISMS		
Checkpoin@ng	granularity	

•  Small	granularity:	large	metadata	
•  Large	granularity:	small	metadata	

Latency	and	loca@on	
•  Writeback	from	DRAM:	long	latency	
•  Remap	in	NVM:	short	latency	

Based	on	these,	we	propose	two	key	
mechanisms		
1.	Dual	granularity	checkpoin@ng	
2.	Overlap	of	execu@on	and	checkpoin@ng	



	
	
	
	
	
	
	
	
	
	

DRAM	 NVM	

1.	DUAL	GRANULARITY	CHECKPOINTING	

High	write	locality	pages	in	DRAM,		
low	write	locality	pages	in	NVM	

Page	Writeback		
in	DRAM	

Block	Remapping	
in	NVM	
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GOOD	FOR		
STREAMING	WRITES	

GOOD	FOR		
RANDOM	WRITES	



TRADEOFF	SPACE	



	
	
	
	
	
	
	
	
	
	

Running 

time	

Checkpoin@ng Running Checkpoin@ng 

time	

Epoch 0	

Epoch 1	
Epoch 2	

Epoch 0	 Epoch 1	
Running Checkpoin@ng Running Checkpoin@ng 

Running Checkpoin@ng 

Epoch 0	 Epoch 1	

2.	OVERLAPPING		
CHECKPOINTING	AND	EXECUTION	

Hides	the	long	latency	of	Page	Writeback		



	
	
	
	
	
	
	
	
	
	

OUTLINE	
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Crash Consistency Problem 

Current Solutions 

ThyNVM 

Evaluation 

Conclusion 



SYSTEM	ARCHITECTURE	



MEMORY	ADDRESS	SPACE	



	
	
	
	
	
	
	
	
	
	

METHODOLOGY	
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Cycle	accurate	x86	simulator	Gem5	
Comparison	Points:	
Ideal	DRAM:	DRAM-based,	no	cost	for	consistency	

– Lowest	latency	system	

Ideal	NVM:	NVM-based,	no	cost	for	consistency	
– NVM	has	higher	latency	than	DRAM	

Journaling:	Hybrid,	commit	dirty	cache	blocks	
– Leverages	DRAM	to	buffer	dirty	blocks		

Shadow	Paging:	Hybrid,	copy-on-write	pages	
– Leverages	DRAM	to	buffer	dirty	pages	



	
	
	
	
	
	
	
	
	
	

ADAPTIVITY	TO	ACCESS	PATTERN	
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OVERLAPPING		
CHECKPOINTING	AND	EXECUTION	
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Stalls	the	applica@on	for	a	negligible	@me	

ThyNVM	spends	only	2.4%/5.5%	of	the	
execu@on	@me	on	checkpoin@ng		

Can	spend	35-45%	of	the	execu@on		
on	checkpoin@ng	
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PERFORMANCE	OF	LEGACY	CODE	
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Provides	consistency	without		
significant	performance	overhead	

Within	-4.9%/+2.7%	of	an		
idealized	DRAM/NVM	system	



KEY-VALUE	STORE	TX	THROUGHPUT	

Storage	throughput	close	to	Ideal	DRAM	



	
	
	
	
	
	
	
	
	
	

OUTLINE	
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Crash Consistency Problem 

Current Solutions 

ThyNVM 

Evaluation 

Conclusion 



	
	
	
	
	
	
	
	
	
	

ThyNVM	
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•  Checkpoints	at	mul$ple	granulari$es	to	
minimize	both	latency	and	metadata	

•  Overlaps	checkpoin$ng	and	execu$on	

•  Adapts	to	DRAM	and	NVM	characteris7cs	

Can	enable	widespread	adop$on		
of	persistent	memory		

A new hardware-based  
checkpointing mechanism, 

with no programming effort 



ThyNVM	
Enabling	So`ware-transparent		

Crash	Consistency		
In	Persistent	Memory	Systems	 

Source	Code	and	More	Available	at		
hhp://persper.com/thynvm	



Our Other FMS 2016 Talks 
n  "A Large-Scale Study of Flash Memory Errors in the Field” 

q  Onur Mutlu (ETH Zurich & CMU) August 10 @ 3:50pm 
q  Study of flash-based SSD errors in Facebook data centers 

over the course of 4 years 
q  First large-scale field study of flash memory reliability 
q  Forum F-22: SSD Testing (Testing Track) 

n  Practical Threshold Voltage Distribution Modeling 
q  Yixin Luo (CMU PhD Student) August 10 @ 4:20pm 
q  Forum E-22: Controllers and Flash Technology 

n  "WARM: Improving NAND Flash Memory Lifetime with 
Write-hotness Aware Retention Management” 
q  Saugata Ghose (CMU Researcher) August 10 @ 5:45pm 
q  Forum C-22: SSD Concepts (SSDs Track) 
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Referenced Papers and Talks 

n  All are available at 
http://users.ece.cmu.edu/~omutlu/projects.htm 
http://users.ece.cmu.edu/~omutlu/talks.htm  

n  And, many other previous works on  
q  NVM & Persistent Memory 
q  DRAM 
q  Hybrid memories 
q  NAND flash memory 
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Thank you. 

Feel free to email me with any questions & feedback 
 

omutlu@ethz.ch  
http://users.ece.cmu.edu/~omutlu/ 
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6.	Read	disturb	noise	study	
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Our	Flash	Memory	Works	(IV)	
7.	Flash	errors	in	the	field	
11)  Jus7n	Meza,	Qiang	Wu,	Sanjeev	Kumar,	and	Onur	Mutlu,	

A	Large-Scale	Study	of	Flash	Memory	Errors	in	the	Field,	SIGMETRICS	2015.	
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12)  Jinglei	Ren,	Jishen	Zhao,	Samira	Khan,	Jongmoo	Choi,	Yongwei	Wu,	and	Onur	

Mutlu,	
ThyNVM:	Enabling	So`ware-Transparent	Crash	Consistency	in	Persistent	
Memory	Systems,	MICRO	2015.	
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Referenced Papers and Talks 

n  All are available at 
http://users.ece.cmu.edu/~omutlu/projects.htm 
http://users.ece.cmu.edu/~omutlu/talks.htm  

n  And, many other previous works on NAND flash memory 
errors and management 
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Related Videos and Course Materials 
n  Undergraduate Computer Architecture Course Lecture 

Videos (2013, 2014, 2015)  

n  Undergraduate Computer Architecture Course 
Materials (2013, 2014, 2015)  

n  Graduate Computer Architecture Lecture Videos 
(2013, 2015)  

n  Parallel Computer Architecture Course Materials 
(Lecture Videos) 

n  Memory Systems Short Course Materials  
    (Lecture Video on Main Memory and DRAM Basics) 
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Additional Slides on  
Persistent Memory and NVM 



Phase Change Memory: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling (capacity and cost) 
q  Non volatility 
q  Low idle power (no refresh) 

n  Cons 
q  Higher latencies: ~4-15x DRAM (especially write) 
q  Higher active energy: ~2-50x DRAM (especially write) 
q  Lower endurance (a cell dies after ~108 writes) 
q  Reliability issues (resistance drift) 

n  Challenges in enabling PCM as DRAM replacement/helper: 
q  Mitigate PCM shortcomings 
q  Find the right way to place PCM in the system 
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PCM-based Main Memory (I) 
n  How should PCM-based (main) memory be organized? 

 

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  
q  How to partition/migrate data between PCM and DRAM 

82 



PCM-based Main Memory (II) 
n  How should PCM-based (main) memory be organized? 

 
n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

q  How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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An Initial Study: Replace DRAM with PCM 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 
q  Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 
n  Replace DRAM with PCM in a 4-core, 4MB L2 system 
n  PCM organized the same as DRAM: row buffers, banks, peripherals 
n  1.6x delay, 2.2x energy, 500-hour average lifetime 

 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 

Scalable DRAM Alternative,” ISCA 2009. 
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Results: Architected PCM as Main Memory  
n  1.2x delay, 1.0x energy, 5.6-year average lifetime 
n  Scaling improves energy, endurance, density 

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees) 
n  Caveat 2: Intensive applications see large performance and energy hits 
n  Caveat 3: Optimistic PCM parameters? 
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A More Viable Approach: Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



Data Placement Between DRAM and PCM 
n  Idea: Characterize data access patterns and guide data 

placement in hybrid memory 

n  Streaming accesses: As fast in PCM as in DRAM 

n  Random accesses: Much faster in DRAM 

n  Idea: Place random access data with some reuse in DRAM; 
streaming data in PCM 

n  Yoon+, “Row Buffer Locality-Aware Data Placement in 
Hybrid Memories,” ICCD 2012 Best Paper Award. 
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STT-MRAM as Main Memory 
n  Magnetic Tunnel Junction (MTJ) device 

q  Reference layer: Fixed magnetic orientation 
q  Free layer: Parallel or anti-parallel 

n  Magnetic orientation of the free layer 
determines logical state of device 
q  High vs. low resistance 

n  Write: Push large current through MTJ to 
change orientation of free layer 

n  Read: Sense current flow 

n  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013. 
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STT-MRAM: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling 
q  Non volatility 
q  Low idle power (no refresh) 

n  Cons 
q  Higher write latency 
q  Higher write energy 
q  Reliability? 

n  Another level of freedom 
q  Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ) 
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Architected STT-MRAM as Main Memory 
n  4-core, 4GB main memory, multiprogrammed workloads 
n  ~6% performance loss, ~60% energy savings vs. DRAM 
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 



Other Opportunities with Emerging Technologies 

n  Merging of memory and storage 
q  e.g., a single interface to manage all data 

n  New applications 
q  e.g., ultra-fast checkpoint and restore 

n  More robust system design 
q  e.g., reducing data loss 

n  Processing tightly-coupled with memory 
q  e.g., enabling efficient search and filtering 
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Coordinated Memory and Storage with NVM (I) 
n  The traditional two-level storage model is a bottleneck with NVM 

q  Volatile data in memory à a load/store interface 
q  Persistent data in storage à a file system interface 
q  Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores 
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Two-Level Store 

Processor 
and caches 

Main Memory 
Storage (SSD/HDD) 

Virtual memory 

Address 
translation 

Load/Store 

Operating 
system 

and file system 

fopen, fread, fwrite, … 

Persistent (e.g., Phase-Change)  
Memory 



Coordinated Memory and Storage with NVM (II) 

n  Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data 
q  Improves both energy and performance 
q  Simplifies programming model as well 
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Unified Memory/Storage 

Processor 
and caches 

Persistent (e.g., Phase-Change) Memory 

Load/Store 

Persistent Memory 
Manager 

Feedback 

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 



The Persistent Memory Manager (PMM) 
n  Exposes a load/store interface to access persistent data 

q  Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data  

n  Manages data placement, location, persistence, security 
q  To get the best of multiple forms of storage 

n  Manages metadata storage and retrieval 
q  This can lead to overheads that need to be managed 

n  Exposes hooks and interfaces for system software 
q  To enable better data placement and management decisions 

n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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The Persistent Memory Manager (PMM) 

97 

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5
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Performance Benefits of a Single-Level Store 
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Energy Benefits of a Single-Level Store 
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