
ThyNVM
Software-Transparent Crash Consistency

for Persistent Memory

Onur Mutlu
omutlu@ethz.ch

(joint work with Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu)

August 8, 2016
Flash Memory Summit 2016, Santa Clara, CA

Original Paper (I)

2

Original Paper (II)
n  Presented at ACM/IEEE MICRO Conference in Dec 2015.

n  Full paper for details:
q  Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei

Wu, and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash
Consistency in Persistent Memory Systems"
Proceedings of the
48th International Symposium on Microarchitecture (MICRO),
Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code]

q  https://users.ece.cmu.edu/~omutlu/pub/ThyNVM-transparent-
crash-consistency-for-persistent-memory_micro15.pdf

3

The Main Memory System

n  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

4

Processor
and caches

Main Memory Storage (SSD/HDD)

Limits of Charge Memory
n  Difficult charge placement and control

q  Flash: floating gate charge
q  DRAM: capacitor charge, transistor leakage

n  Reliable sensing becomes difficult as charge
storage unit size reduces

5

Emerging NVM Technologies
n  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n  Example: Phase Change Memory
q  Data stored by changing phase of material
q  Data read by detecting material’s resistance
q  Expected to scale to 9nm (2022 [ITRS])
q  Prototyped at 20nm (Raoux+, IBM JRD 2008)
q  Expected to be denser than DRAM: can store multiple bits/cell

n  But, emerging technologies have (many) shortcomings
q  Can they be enabled to replace/augment/surpass DRAM?

6

Promising NVM Technologies
n  PCM

q  Inject current to change material phase
q  Resistance determined by phase

n  STT-MRAM
q  Inject current to change magnet polarity
q  Resistance determined by polarity

n  Memristors/RRAM/ReRAM
q  Inject current to change atomic structure
q  Resistance determined by atom distance

7

NVM as Main Memory Replacement
n  Very promising

q  persistence, high capacity, OK latency, low idle power

n  Can enable merging of memory and storage

n  Two example works that show benefits
q  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q  Kultursay, Kandemir, Sivasubramaniam, Mutlu,

“Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.

8

Two Example Works

9

Architected STT-MRAM as Main Memory
n  4-core, 4GB main memory, multiprogrammed workloads
n  ~6% performance loss, ~60% energy savings vs. DRAM

10

88%
90%
92%
94%
96%
98%

P
er

fo
rm

an
ce

vs

. D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%
20%
40%
60%
80%

100%

En
er

gy

vs
. D

R
A

M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

NVM
Ctrl DRAM NVM Type X

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Some Opportunities with Emerging Technologies

n  Merging of memory and storage
q  e.g., a single interface to manage all data

n  New applications
q  e.g., ultra-fast checkpoint and restore

n  More robust system design
q  e.g., reducing data loss

n  Processing tightly-coupled with memory
q  e.g., enabling efficient search and filtering

12 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

	
	
	
	
	
	
	
	
	
	

TWO-LEVEL	STORAGE	MODEL	
CP

U
	

M
EM

O
RY

	
ST
O
RA

G
E	

VOLATILE	
FAST	

BYTE	ADDR	
NONVOLATILE	

SLOW	
BLOCK	ADDR	

Ld/St	

FILE		
I/O	

DRAM	

13	

	
	
	
	
	
	
	
	
	
	

TWO-LEVEL	STORAGE	MODEL	
CP

U
	

M
EM

O
RY

	
ST
O
RA

G
E	

VOLATILE	
FAST	

BYTE	ADDR	
NONVOLATILE	

SLOW	
BLOCK	ADDR	

Ld/St	

FILE		
I/O	

DRAM	

14	

PCM, STT-RAM
NVM	

Non-vola@le	memories	combine	
characteris@cs	of	memory	and	storage	

Coordinated Memory and Storage with NVM (I)
n  The traditional two-level storage model is a bottleneck with NVM

q  Volatile data in memory à a load/store interface
q  Persistent data in storage à a file system interface
q  Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

15

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Coordinated Memory and Storage with NVM (II)

n  Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
q  Improves both energy and performance
q  Simplifies programming model as well

16

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

	
	
	
	
	
	
	
	
	
	

PERSISTENT	MEMORY	

CPU
	

PERSISTEN
T

M
EM

O
RY	

Provides	an	opportunity	to	manipulate	
persistent	data	directly	

Ld/St	

NVM	

17	

Performance Benefits of Persistent Memory

18

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of Persistent Memory

19

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges

n  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and
Onur Mutlu,
"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

20

The Persistent Memory Manager (PMM)
n  Exposes a load/store interface to access persistent data

q  Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n  Manages data placement, location, persistence, security
q  To get the best of multiple forms of storage

n  Manages metadata storage and retrieval
q  This can lead to overheads that need to be managed

n  Exposes hooks and interfaces for system software
q  To enable better data placement and management decisions

n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

21

The Persistent Memory Manager (PMM)

22

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	informa@on	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices	

Persistent objects

One Key Challenge

n  How to ensure consistency of system/data if all
memory is persistent?

n  Two extremes
q  Programmer transparent: Let the system handle it
q  Programmer only: Let the programmer handle it

n  Many alternatives in-between…

23

CHALLENGE:	CRASH	CONSISTENCY	

	
	
	
	
	
	
	
	
	
	

System	crash	can	result	in		
permanent	data	corrup@on	in	NVM	

24	

Persistent	Memory	System	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin {
 Insert a new node;
} AtomicEnd;

Limits	adop@on	of	NVM	
Have	to	rewrite	code	with	clear	par@@on		
between	vola@le	and	non-vola@le	data	

Burden	on	the	programmers	
25	

	
	
	
	
	
	
	
	
	
	

OUR	APPROACH:	ThyNVM	

26	

Goal:
Software-transparent crash consistency

in persistent memory systems

	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	

27	

•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoin7ng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoin7ng	latency	

•  Adapts	to	DRAM	and	NVM	characteris7cs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based
checkpointing mechanism

	
	
	
	
	
	
	
	
	
	

OUTLINE	

28	

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

	
	
	
	
	
	
	
	
	
	

CRASH	CONSISTENCY	PROBLEM	

29	

Add a node to a linked list

1.	Link	to	next	2.	Link	to	prev	

System	crash	can	result	in		
inconsistent	memory	state	

	
	
	
	
	
	
	
	
	
	

OUTLINE	

30	

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

31	

void hashtable_update(hashtable_t* ht,
 void *key, void *data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) list_find(chain,
 &updatePair);
 pair->second = data;
}

Example Code
update a node in a persistent hash table

Explicit	interfaces	to	manage	consistency	
– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

32	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

33	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara@on	of	persistent	components	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

34	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara@on	of	persistent	components	

Need	a	new	implementa@on	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

35	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara@on	of	persistent	components	

Need	a	new	implementa@on	

Third	party	code		
can	be	inconsistent	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

36	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara@on	of	persistent	components	

Need	a	new	implementa@on	

Third	party	code		
can	be	inconsistent	

Prohibited	
Opera@on	

Burden	on	the	programmers	

	
	
	
	
	
	
	
	
	
	

OUTLINE	

37	

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

	
	
	
	
	
	
	
	
	
	

OUR	GOAL	

38	

Software transparent consistency
in persistent memory systems

•  Execute	legacy	applica$ons		
•  Reduce	burden	on	programmers		

•  Enable	easier	integra$on	of	NVM	

NO	MODIFICATION		
IN	THE	CODE	

void hashtable_update(hashtable_t* ht,
 void *key, void *data)
{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain,
 &updatePair);
pair->second = data;
}

	
	
	
	
	
	
	
	
	
	

RUN	THE	EXACT	SAME	CODE…	

Persistent	Memory	System	

So`ware	transparent		
memory	crash	consistency	

40	

void hashtable_update(hashtable_t* ht,
 void *key, void *data){
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) list_find(chain,

 &updatePair);
 pair->second = data;
}

	
	
	
	
	
	
	
	
	
	

ThyNVM	APPROACH	

Running

Epoch 0	 Epoch 1	

time	

Checkpoin@ng Running Checkpoin@ng

41	

Periodic checkpointing of data
managed by hardware

Transparent	to	applica@on	and	system	

	
	
	
	
	
	
	
	
	
	

CHECKPOINTING	OVERHEAD	

Running

Epoch 0	 Epoch 1	

time	

Checkpoin@ng Running Checkpoin@ng

42	

1. Metadata overhead

Working	loca@on	 Checkpoint	loca@on	
X	 X’	
Y	 Y’	

Metadata	Table	

2. Checkpointing latency

	
	
	
	
	
	
	
	
	
	

1.	METADATA	AND	
CHECKPOINTING	GRANULARITY	

PAGE	 CACHE	BLOCK	

One	Entry	Per	Page	
Small	Metadata	

One	Entry	Per	Block	
Huge	Metadata	

43	

PAGE	
GRANULARITY	

BLOCK	
GRANULARITY	

Working	loca@on	 Checkpoint	loca@on	
X	 X’	
Y	 Y’	

	
	
	
	
	
	
	
	
	
W	

2.	LATENCY	AND	LOCATION	

44	

DRAM-BASED	WRITEBACK	

Long	latency	of	wri@ng	back	data	to	NVM	

DRAM	 NVM	

Working	loca@on	 Checkpoint	loca@on	
X	 X’	
1.	Writeback	data	

from	DRAM	

2.	Update	the	
metadata	table	

	
	
	
	
	
	
	
	
	
	

2.	LATENCY	AND	LOCATION	

45	

NVM-BASED	REMAPPING	

Short	latency	in	NVM-based	remapping	

DRAM	 NVM	

Working	loca@on	 Checkpoint	loca@on	
Y	 X	

1.  No	copying		
of	data	

2.	Update	the	
metadata	table	

3.	Write	in	a		
new	loca7on		

	
	
	
	
	
	
	
	
	
	

ThyNVM	KEY	MECHANISMS		
Checkpoin@ng	granularity	

•  Small	granularity:	large	metadata	
•  Large	granularity:	small	metadata	

Latency	and	loca@on	
•  Writeback	from	DRAM:	long	latency	
•  Remap	in	NVM:	short	latency	

Based	on	these,	we	propose	two	key	
mechanisms		
1.	Dual	granularity	checkpoin@ng	
2.	Overlap	of	execu@on	and	checkpoin@ng	

	
	
	
	
	
	
	
	
	
	

DRAM	 NVM	

1.	DUAL	GRANULARITY	CHECKPOINTING	

High	write	locality	pages	in	DRAM,		
low	write	locality	pages	in	NVM	

Page	Writeback		
in	DRAM	

Block	Remapping	
in	NVM	

47	

GOOD	FOR		
STREAMING	WRITES	

GOOD	FOR		
RANDOM	WRITES	

TRADEOFF	SPACE	

	
	
	
	
	
	
	
	
	
	

Running

time	

Checkpoin@ng Running Checkpoin@ng

time	

Epoch 0	

Epoch 1	
Epoch 2	

Epoch 0	 Epoch 1	
Running Checkpoin@ng Running Checkpoin@ng

Running Checkpoin@ng

Epoch 0	 Epoch 1	

2.	OVERLAPPING		
CHECKPOINTING	AND	EXECUTION	

Hides	the	long	latency	of	Page	Writeback		

	
	
	
	
	
	
	
	
	
	

OUTLINE	

50	

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

SYSTEM	ARCHITECTURE	

MEMORY	ADDRESS	SPACE	

	
	
	
	
	
	
	
	
	
	

METHODOLOGY	

53	

Cycle	accurate	x86	simulator	Gem5	
Comparison	Points:	
Ideal	DRAM:	DRAM-based,	no	cost	for	consistency	

– Lowest	latency	system	

Ideal	NVM:	NVM-based,	no	cost	for	consistency	
– NVM	has	higher	latency	than	DRAM	

Journaling:	Hybrid,	commit	dirty	cache	blocks	
– Leverages	DRAM	to	buffer	dirty	blocks		

Shadow	Paging:	Hybrid,	copy-on-write	pages	
– Leverages	DRAM	to	buffer	dirty	pages	

	
	
	
	
	
	
	
	
	
	

ADAPTIVITY	TO	ACCESS	PATTERN	

54	

0	

1	

2	

3	

Journal	 Shadow	ThyNVM	

N
or
m
al
iz
ed

	W
rit
e	

	T
ra
ffi
c	
To

	N
VM

	

0	

1	

2	

3	

Journal	 Shadow	ThyNVM	

N
or
m
al
iz
ed

	W
rit
e	

	T
ra
ffi
c	
To

	N
VM

	

															RANDOM																	SEQUENTIAL	

ThyNVM	adapts	to	both	access	paherns	

Journaling	is	beher	for	Random	and	
Shadow	paging	is	beher	for	Sequen@al	

B
E
T
T
E
R	

	
	
	
	
	
	
	
	
	
	

OVERLAPPING		
CHECKPOINTING	AND	EXECUTION	

55	

															RANDOM																	SEQUENTIAL	

0	

20	

40	

60	

Journal	 Shadow	ThyNVM	

Pe
rc
en

ta
ge
	o
f	

Ex
ec
u@

on
	T
im

e	
		

0	

20	

40	

60	

Journal	 Shadow	ThyNVM	

Pe
rc
en

ta
ge
	o
f	

Ex
ec
u@

on
	T
im

e	
	

Stalls	the	applica@on	for	a	negligible	@me	

ThyNVM	spends	only	2.4%/5.5%	of	the	
execu@on	@me	on	checkpoin@ng		

Can	spend	35-45%	of	the	execu@on		
on	checkpoin@ng	

B
E
T
T
E
R	

	
	
	
	
	
	
	
	
	
	

PERFORMANCE	OF	LEGACY	CODE	

56	

Provides	consistency	without		
significant	performance	overhead	

Within	-4.9%/+2.7%	of	an		
idealized	DRAM/NVM	system	

KEY-VALUE	STORE	TX	THROUGHPUT	

Storage	throughput	close	to	Ideal	DRAM	

	
	
	
	
	
	
	
	
	
	

OUTLINE	

58	

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

	
	
	
	
	
	
	
	
	
	

ThyNVM	

59	

•  Checkpoints	at	mul$ple	granulari$es	to	
minimize	both	latency	and	metadata	

•  Overlaps	checkpoin$ng	and	execu$on	

•  Adapts	to	DRAM	and	NVM	characteris7cs	

Can	enable	widespread	adop$on		
of	persistent	memory		

A new hardware-based
checkpointing mechanism,

with no programming effort

ThyNVM	
Enabling	So`ware-transparent		

Crash	Consistency		
In	Persistent	Memory	Systems	

Source	Code	and	More	Available	at		
hhp://persper.com/thynvm	

Our Other FMS 2016 Talks
n  "A Large-Scale Study of Flash Memory Errors in the Field”

q  Onur Mutlu (ETH Zurich & CMU) August 10 @ 3:50pm
q  Study of flash-based SSD errors in Facebook data centers

over the course of 4 years
q  First large-scale field study of flash memory reliability
q  Forum F-22: SSD Testing (Testing Track)

n  Practical Threshold Voltage Distribution Modeling
q  Yixin Luo (CMU PhD Student) August 10 @ 4:20pm
q  Forum E-22: Controllers and Flash Technology

n  "WARM: Improving NAND Flash Memory Lifetime with
Write-hotness Aware Retention Management”
q  Saugata Ghose (CMU Researcher) August 10 @ 5:45pm
q  Forum C-22: SSD Concepts (SSDs Track)

61

Referenced Papers and Talks

n  All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/talks.htm

n  And, many other previous works on
q  NVM & Persistent Memory
q  DRAM
q  Hybrid memories
q  NAND flash memory

62

Thank you.

Feel free to email me with any questions & feedback

omutlu@ethz.ch
http://users.ece.cmu.edu/~omutlu/

ThyNVM
Software-Transparent Crash Consistency

for Persistent Memory

Onur Mutlu
omutlu@ethz.ch

(joint work with Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu)

August 8, 2016
Flash Memory Summit 2016, Santa Clara, CA

References to Papers and Talks

Challenges and Opportunities in Memory

n  Onur Mutlu,
"Rethinking Memory System Design"
Keynote talk at
2016 ACM SIGPLAN International Symposium on Memory
Management (ISMM), Santa Barbara, CA, USA, June 2016.
[Slides (pptx) (pdf)]
[Abstract]

n  Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.

66

Phase Change Memory As DRAM Replacement

n  Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable
DRAM Alternative"
Proceedings of the
36th International Symposium on Computer Architecture
(ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)

n  Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo
Zhao, Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main
Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009
Computer Architecture Conferences (MICRO TOP PICKS),
Vol. 30, No. 1, pages 60-70, January/February 2010.

67

STT-MRAM As DRAM Replacement

n  Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the
2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Austin, TX,
April 2013. Slides (pptx) (pdf)

68

Taking Advantage of Persistence in Memory
n  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and

Onur Mutlu,
"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

n  Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency in
Persistent Memory Systems"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [
Poster (pptx) (pdf)]
[Source Code]

69

Hybrid DRAM + NVM Systems (I)
n  HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,

and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories"
Proceedings of the
30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (pptx) (pdf)
Best paper award (in Computer Systems and Applications
track).

n  Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

70

Hybrid DRAM + NVM Systems (II)

n  Dongwoo Kang, Seungjae Baek, Jongmoo Choi, Donghee Lee,
Sam H. Noh, and Onur Mutlu,
"Amnesic Cache Management for Non-Volatile Memory"
Proceedings of the
31st International Conference on Massive Storage Systems and
Technologies (MSST), Santa Clara, CA, June 2015.
[Slides (pdf)]

71

NVM Design and Architecture

n  HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P.
Jouppi, and Onur Mutlu,
"Efficient Data Mapping and Buffering Techniques for
Multi-Level Cell Phase-Change Memories"
ACM Transactions on Architecture and Code Optimization
(TACO), Vol. 11, No. 4, December 2014. [Slides (ppt) (pdf)]
Presented at the 10th HiPEAC Conference, Amsterdam,
Netherlands, January 2015.
[Slides (ppt) (pdf)]

n  Justin Meza, Jing Li, and Onur Mutlu,
"Evaluating Row Buffer Locality in Future Non-Volatile Main
Memories"
SAFARI Technical Report, TR-SAFARI-2012-002, Carnegie Mellon
University, December 2012.

 72

Our	FMS	Talks	and	Posters	
• Onur	Mutlu,	ThyNVM:	SoCware-Transparent	Crash	Consistency	for	
Persistent	Memory,	FMS	2016.	

• Onur	Mutlu,	Large-Scale	Study	of	In-the-Field	Flash	Failures,	FMS	2016.	
•  Yixin	Luo,	Prac$cal	Threshold	Voltage	Distribu$on	Modeling,	FMS	2016.	
•  Saugata	Ghose,	Write-hotness	Aware	Reten$on	Management,	FMS	2016.	
• Onur	Mutlu,	Read	Disturb	Errors	in	MLC	NAND	Flash	Memory,	FMS	2015.	
•  Yixin	Luo,	Data	Reten$on	in	MLC	NAND	Flash	Memory,	FMS	2015.	
• Onur	Mutlu,	
Error	Analysis	and	Management	for	MLC	NAND	Flash	Memory,	FMS	2014.	

•  FMS	2016	posters:	
-  WARM:	Improving	NAND	Flash	Memory	Life7me	with	Write-hotness	Aware	
Reten7on	Management	

-  Read	Disturb	Errors	in	MLC	NAND	Flash	Memory	
-  Data	Reten7on	in	MLC	NAND	Flash	Memory	

73	

Our	Flash	Memory	Works	(I)	
1.   Reten@on	noise	study	and	management	
1)  Yu	Cai,	Gulay	Yalcin,	Onur	Mutlu,	Erich	F.	Haratsch,	Adrian	Cristal,	Osman	

Unsal,	and	Ken	Mai,	
Flash	Correct-and-Refresh:	Reten@on-Aware	Error	Management	for	
Increased	Flash	Memory	Life@me,	ICCD	2012.	

2)  Yu	Cai,	Yixin	Luo,	Erich	F.	Haratsch,	Ken	Mai,	and	Onur	Mutlu,	
Data	Reten@on	in	MLC	NAND	Flash	Memory:	Characteriza@on,	Op@miza@on	
and	Recovery,	HPCA	2015.	

3)  Yixin	Luo,	Yu	Cai,	Saugata	Ghose,	Jongmoo	Choi,	and	Onur	Mutlu,	
WARM:	Improving	NAND	Flash	Memory	Life@me	with	Write-hotness	Aware	
Reten@on	Management,	MSST	2015.	

2.   Flash-based	SSD	prototyping	and	tes@ng	planorm	
4)  Yu	Cai,	Erich	F.	Haratsh,	Mark	McCartney,	Ken	Mai,	

FPGA-based	solid-state	drive	prototyping	planorm,	FCCM	2011.	

74	

Our	Flash	Memory	Works	(II)	
3.   Overall	flash	error	analysis	
5)  Yu	Cai,	Erich	F.	Haratsch,	Onur	Mutlu,	and	Ken	Mai,	

Error	Paherns	in	MLC	NAND	Flash	Memory:	Measurement,	Characteriza@on,	
and	Analysis,	DATE	2012.	

6)  Yu	Cai,	Gulay	Yalcin,	Onur	Mutlu,	Erich	F.	Haratsch,	Adrian	Cristal,	Osman	
Unsal,	and	Ken	Mai,	
Error	Analysis	and	Reten@on-Aware	Error	Management	for	NAND	Flash	
Memory,	ITJ	2013.	

4.   Program	and	erase	noise	study	
7)  Yu	Cai,	Erich	F.	Haratsch,	Onur	Mutlu,	and	Ken	Mai,	

Threshold	Voltage	Distribu@on	in	MLC	NAND	Flash	Memory:	
Characteriza@on,	Analysis	and	Modeling,	DATE	2013.	

75	

Our	Flash	Memory	Works	(III)	
5.	Cell-to-cell	interference	characteriza@on	and	tolerance	
8)  Yu	Cai,	Onur	Mutlu,	Erich	F.	Haratsch,	and	Ken	Mai,	

Program	Interference	in	MLC	NAND	Flash	Memory:	Characteriza@on,	
Modeling,	and	Mi@ga@on,	ICCD	2013.		

9)  Yu	Cai,	Gulay	Yalcin,	Onur	Mutlu,	Erich	F.	Haratsch,	Osman	Unsal,	Adrian	
Cristal,	and	Ken	Mai,	
Neighbor-Cell	Assisted	Error	Correc@on	for	MLC	NAND	Flash	Memories,	
SIGMETRICS	2014.	

	
6.	Read	disturb	noise	study	
10)  Yu	Cai,	Yixin	Luo,	Saugata	Ghose,	Erich	F.	Haratsch,	Ken	Mai,	and	Onur	Mutlu,	

Read	Disturb	Errors	in	MLC	NAND	Flash	Memory:	Characteriza@on	and	
Mi@ga@on,	DSN	2015.	

76	

Our	Flash	Memory	Works	(IV)	
7.	Flash	errors	in	the	field	
11)  Jus7n	Meza,	Qiang	Wu,	Sanjeev	Kumar,	and	Onur	Mutlu,	

A	Large-Scale	Study	of	Flash	Memory	Errors	in	the	Field,	SIGMETRICS	2015.	

8.	Persistent	memory	
12)  Jinglei	Ren,	Jishen	Zhao,	Samira	Khan,	Jongmoo	Choi,	Yongwei	Wu,	and	Onur	

Mutlu,	
ThyNVM:	Enabling	So`ware-Transparent	Crash	Consistency	in	Persistent	
Memory	Systems,	MICRO	2015.	

77	

Referenced Papers and Talks

n  All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/talks.htm

n  And, many other previous works on NAND flash memory
errors and management

78

Related Videos and Course Materials
n  Undergraduate Computer Architecture Course Lecture

Videos (2013, 2014, 2015)

n  Undergraduate Computer Architecture Course
Materials (2013, 2014, 2015)

n  Graduate Computer Architecture Lecture Videos
(2013, 2015)

n  Parallel Computer Architecture Course Materials
(Lecture Videos)

n  Memory Systems Short Course Materials
 (Lecture Video on Main Memory and DRAM Basics)

79

Additional Slides on
Persistent Memory and NVM

Phase Change Memory: Pros and Cons
n  Pros over DRAM

q  Better technology scaling (capacity and cost)
q  Non volatility
q  Low idle power (no refresh)

n  Cons
q  Higher latencies: ~4-15x DRAM (especially write)
q  Higher active energy: ~2-50x DRAM (especially write)
q  Lower endurance (a cell dies after ~108 writes)
q  Reliability issues (resistance drift)

n  Challenges in enabling PCM as DRAM replacement/helper:
q  Mitigate PCM shortcomings
q  Find the right way to place PCM in the system

81

PCM-based Main Memory (I)
n  How should PCM-based (main) memory be organized?

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q  How to partition/migrate data between PCM and DRAM

82

PCM-based Main Memory (II)
n  How should PCM-based (main) memory be organized?

n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

q  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

83

An Initial Study: Replace DRAM with PCM
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q  Derived “average” PCM parameters for F=90nm

84

Results: Naïve Replacement of DRAM with PCM
n  Replace DRAM with PCM in a 4-core, 4MB L2 system
n  PCM organized the same as DRAM: row buffers, banks, peripherals
n  1.6x delay, 2.2x energy, 500-hour average lifetime

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
85

Results: Architected PCM as Main Memory
n  1.2x delay, 1.0x energy, 5.6-year average lifetime
n  Scaling improves energy, endurance, density

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n  Caveat 2: Intensive applications see large performance and energy hits
n  Caveat 3: Optimistic PCM parameters?

86

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Data Placement Between DRAM and PCM
n  Idea: Characterize data access patterns and guide data

placement in hybrid memory

n  Streaming accesses: As fast in PCM as in DRAM

n  Random accesses: Much faster in DRAM

n  Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

n  Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

88

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	beher	performance	than	all	PCM,		
within	29%	of	all	DRAM	performance	

31%	

29%	

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.	

STT-MRAM as Main Memory
n  Magnetic Tunnel Junction (MTJ) device

q  Reference layer: Fixed magnetic orientation
q  Free layer: Parallel or anti-parallel

n  Magnetic orientation of the free layer
determines logical state of device
q  High vs. low resistance

n  Write: Push large current through MTJ to
change orientation of free layer

n  Read: Sense current flow

n  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons
n  Pros over DRAM

q  Better technology scaling
q  Non volatility
q  Low idle power (no refresh)

n  Cons
q  Higher write latency
q  Higher write energy
q  Reliability?

n  Another level of freedom
q  Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)

91

Architected STT-MRAM as Main Memory
n  4-core, 4GB main memory, multiprogrammed workloads
n  ~6% performance loss, ~60% energy savings vs. DRAM

92

88%
90%
92%
94%
96%
98%

P
er

fo
rm

an
ce

vs

. D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%
20%
40%
60%
80%

100%

En
er

gy

vs
. D

R
A

M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Other Opportunities with Emerging Technologies

n  Merging of memory and storage
q  e.g., a single interface to manage all data

n  New applications
q  e.g., ultra-fast checkpoint and restore

n  More robust system design
q  e.g., reducing data loss

n  Processing tightly-coupled with memory
q  e.g., enabling efficient search and filtering

93

Coordinated Memory and Storage with NVM (I)
n  The traditional two-level storage model is a bottleneck with NVM

q  Volatile data in memory à a load/store interface
q  Persistent data in storage à a file system interface
q  Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

94

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Coordinated Memory and Storage with NVM (II)

n  Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
q  Improves both energy and performance
q  Simplifies programming model as well

95

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)
n  Exposes a load/store interface to access persistent data

q  Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n  Manages data placement, location, persistence, security
q  To get the best of multiple forms of storage

n  Manages metadata storage and retrieval
q  This can lead to overheads that need to be managed

n  Exposes hooks and interfaces for system software
q  To enable better data placement and management decisions

n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

96

The Persistent Memory Manager (PMM)

97

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	informa@on	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices	

Persistent objects

Performance Benefits of a Single-Level Store

98

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

99

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

