
1 / 30

In-Storage Compute: an Ultimate
Solution for Accelerating I/O-
intensive Applications

13 August 2015
YANG SEOK KI, Director, Memory Solutions Lab, Samsung Electronics

2 / 30

Disclaimer: The contents provided in this material are
based on concepts and early research results, and are for
technical discussions only. This material does not reflect
any product-level plan of records.

3 / 30

Korea HST Team US ADS Team

Contributors

Yangwook KANG

Heekwon PARK

Boncheol GU

Duckho BAE

Sungho YOON

Special thanks to:
Yoonho Chung, Insoon Jo, Minwook Jung, Jungwook Kang, Moonsang Kwon,
Truong Nguyen, Dongchul Park, Prem Paulson, Jonghyun Yoon

4 / 30

Outline

1. Background
2. In-Storage Compute Concept
3. ISC Prototype
4. Case Studies
5. Summary

5 / 30

Data Processing Market

Source: IDC, Worldwide Business Analytics Software 2014–2018 Forecast, Jul 2014 [1]

Advanced and predictive analytics
Query, reporting, and analysis

Spatial information analytics
Content analytics

Subtotal
0

5,000

10,000

15,000

20,000

25,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

$M

Worldwide BI and Analytics Tools Revenue by Segment

Advanced and predictive analytics Query, reporting, and analysis Spatial information analytics

Content analytics Subtotal

Constant growth of business intelligence & analytics
market

6 / 30

I/O Performance Issue

BI and analytics tools are I/O hungry!!
• They usually access terabytes (sometimes even petabytes) of data on

slow storage device

 Event Waits Time(s) Avg. wait (ms) % DB time Wait class

Direct path read 4,604,339 567.141 123 63.67 User I/O

Direct path read temp 1,955,162 147,298 75 16.54 User I/O

DB CPU 38,874 4.36

DB file sequential read 117,944 16,399 139 1.84 User I/O

Direct path write temp 597,138 13,507 23 1.52 User I/O

Source: HUAWEI, Accelerate Oracle Performance, Sep 2012 [2]

OLAP Bottleneck!!

7 / 30

Data 1

Data 2

Data 3

DRAM CPU SSDs

Final data

Host

CPU-centric Computing Model (Von Neumann)

Long journey of data

8 / 30

Moving Data is Expensive!!

Moving Computation is Cheaper than Moving Data
Source: HDFS Architecture Guide [3]

Reducing data movement can help improve both energy and
performance

Source: USENIX HotPower, 2012 [4]

The energy consumed by data movement is starting to exceed the
energy consumed by computation

Source: High Performance parallel IO, 2014 [5]

9 / 30

Near Data Processing Technology

Intelligent SSD [NxGnData]

Netezza S-blade [IBM]

Exadata [Oracle]

SPU (Storage Processing Unit) [Seagate]

Closer to source

10 / 30

The ultimate of close-to-data compute for high
performance & low power is

“In-Storage Compute (ISC)”

11 / 30

Data 1

Data 2

Data 3

Host
DRAM CPU ISC SSDs

Final data

What is ISC (In-Storage Compute)?

12 / 30

Why? IO Traffic

ISC is an ultimate approach to IO reduction/avoidance

ISC SSD
Typical SSD

A

A

A Target data

A

A

A

Computin
g

A Target data

Samsung SAS-based ISC with a Hadoop application

13 / 30

Why? Coprocessor

SSD is a complete computer with high performance low
power processor

Power
management

Capacitor

26.5

5.5

46.7

10.6

0

20

40

60

Baseline SmartSSD Baseline SmartSSD

Single instance Two instances

Power Consumption (Watts)

ISC SSD ISC SSD

5x

Samsung SAS-based ISC with a Hadoop application

14 / 30

Power
management

Capacitor

Why? Bandwidth Gap

Superfluous internal bandwidth
• To hide processing overhead of host interface and FTL

15 / 30

Why? Resource Utilization

Storage resource is underutilized

16 / 30

How? ISC Application Development Process

C/C++
 - Support
 C++11/STL

1

2

3
5

ARM Cross compile

X86 Compile

ISC SSD Emulation

Download
/isc/myprogra
m/ssdlet

Run /isc/myprogram/host

ssdlet Host app

4

6

17 / 30

ISC Dataflow Programming Model

Device ISC Application

SSDlet SSDlet

Storage

SSD

Host

Host ISC Application

SSDlet

Input port

Pipe

Ouput port

get() put()

get() put()

read() write()

read() write()

18 / 30

ISC Multiple Device Model

Host ISC Application

Input port

Pipe

Ouput port

19 / 30

int main(int argc, char *argv[])
{
 SSD ssd(“/dev/nvme0n1p1”);
 module_id_t mid = ssd.loadModule(File(ssd, “./libkvstore.so”);
 Application app(ssd);

 SSDLet kvstore(app, mid, “KVStore”);
 auto out_command = app.connectTo<String>(kvstore.in(0));
 auto out_key = app.connectTo<String>(kvstore.in(1));
 auto out_value= app.connectTo<String>(kvstore.in(2));
 auto in_result = app.connectTo<String>(kvstore.out(0));
 app.start();

 string command, key, value;
 while (std::cin >> command) {
 if (command == “get”) {
 out_command.put(command);
 std::cin >> key;
 out_key.put(key);
 in_result.get(value);
 std::cout << value << std::endl;
 else if (command == “put”) {
 out_command.put(command);
 std::cin >> key >> value;
 out_key.put(key);
 out_value.put(value);
 }
 else break;
 }
 return 0;
}

class KVStore
 public SSDLet<IN_TYPE<SR(string), SR(string), SR(string)>,
 OUT_TYPE<SR(string)>>
{
 public:
 map<string, string> table;

 void run()
 {
 auto in_command = getInputPort<0>();
 auto in_key = getInputPort<1>();
 auto in_value = getInputPort<2>();
 auto out_value = getOutputPort<0>();

 string command, key, value;
 while (true) {
 if (!in_command.get(command))
 break;

 if (command == “get”) {
 if (!in_key.get(key))
 break;
 out_value.put(table[key]);
 }
 if (command == “put”) {
 if (!in_key.get(key) || !in_value.get(value))
 break;
 table[key] = value;
 }
 }
 }
};

Simple Key Value Store in ISC Programming

KVStore

cmd

value

value

key

20 / 30

ISC Host Library

Host Program

SSD Firmware

ISC Runtime

ISC Runtime Framework

Device Program

SSDLet SSDLet Built-in
Task

Fiber Fiber Fiber

Scheduler

Input port

Pipe

Ouput port

21 / 30

Samsung ISC SSD Prototype

Commodity SSD
• Samsung PM1725 NVMe with the ISC feature
• PCIe 3.0 x4
• 800 GB

Software
• C++11
• C++ STL
• g++
• Software emulator

22 / 30

Case Study 1: Data Analytics with MySQL

MySQL

I/O Interface

I/O Interface

Aggregate

Scan

MySQL

I/O Interface

I/O Interface

Aggregate

Data preprocessing
on SSD

MySQL determines data pages to fetch according to
relevance hints from SSD
• MySQL gets relevance hints for pages in a given range all at once
• Filter out access to pages with irrelevant data

23 / 30

Data Analytics Query

Elapsed time of TPC-H query 2
• An analytic query to find a minimum cost supplier

• ISC reduces the query time to less than 1/40

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND
p_size = 15 AND p_type LIKE '%BRASS' AND
s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name = 'EUROPE'
AND ps_supplycost = (
 SELECT MIN(ps_supplycost)
 FROM partsupp, supplier, nation, region
 WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND
 s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name = 'EUROPE')
ORDER BY s_acctbal desc, n_name, s_name, p_partkey
LIMIT 100;

The most efficient plan
is to put part table first
in the join order and
filter out its irrelevant

pages!

of pages read w/
MySQL (baseline)

Table name # of pages read w/
ISC

1,325,978 Total 22,317

325,386 Part 7,525

15,229 Supplier 4,582

985,354 Partsupp 10,201

5 Nation 5

4 Region 4 0

20

40

60

80

100

120

MySQL (baseline) ISC

116.7

2.6

Se
co

nd
s

Execution Time of TPC-H Query 2

24 / 30

3.6X TPC-H Query Processing Speed Up

A representative TPC-H benchmark subset is expected to
reveal over 3.6x performance gains

0
10
20
30
40
50
60
70
80
90

2 3 4 6 10 12 14 17 Geo mean

44.8

0.4 0.7 0.9
10.7

1.2

82.9

2.1 3.6

Query Number

Speed-up by ISC

Host server Dell PowerEdge R720
- Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz x2
- 3G of DRAM
- OS device: Samsung MZ-6ER100T SAS 100GB SSD
- Data device: PM1725 480GB NVMe SSD (SR=3GB/s)

OS Ubuntu 15.04 (3.19.0 kernel)

Software Mariadb-5.5.42 & TPC-H 2.17.0

TPC-H dataset 20G of dataset (with scale factor of 10)

25 / 30

Case Study 2: Storage Compaction

LevelDB
• One of popular embedded databases
• Open-source, embedded key/value store by

Google
• Base database system for other open

source projects
- RocksDB (LevelDB+HBase),

HyperLevelDB
- Riak, Ceph storage backend

Log: Max size of 4MB then flushed into a set of Level 0 SST files

Level 0: Max of 4 SST files then one file compacted into Level 1

Level 1: Max total size of 10MB then one file compacted into Level 2

Level 2: Max total size of 10 x Level 1 then one file compacted into Level 3

Level 3+: Max total size of 10 x previous level then one file compacted into next level

26 / 30

New LevelDB with Compaction Powered by ISC

Compaction
Read/Merge/Write

memtable

Immutable
table

Log

Insert/update Append

Flush Compact

27 / 30

Up to 10X Throughput Improvement

10x

No Read

More Flush

28 / 30

Take-Away Messages

Computing paradigm shift from CPU-centric to data-centric for
I/O intensive applications

Samsung ISC realizes heterogeneous computing framework
across general purpose CPU and SSD.

IO intensive applications can benefit from low power high
performance of embedded processors and high internal
bandwidth of SSDs.

Samsung ISC prototype
• ISC-aware MySQL achieves performance improvement up to 80x or 3.6x on

average with TPC-H

• ISC-aware LevelDB achieves up to 10x throughput improvement with
dbbench (default benchmark)

29 / 30

Reference
[1] IDC, “Worldwide Business Analytics Software 2014–2018 Forecast and 2013 Vendor Shares,” Jul 2014.
[2] HUAWEI, “Accelerate Oracle Performance by Using ASM Preferred Read Failure Group with Dorado,” Sep 2012.
[3] HDFS Architecture Guide, https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
[4] Devesh Tiwari et al., “Reducing Data Movement Costs using Energy-Efficient, Active Computation on SSD,”

HotPower’12, 2012.
[5] Prabhat and Quincey Koziol, “High Performance Parallel I/O,” CRC Press book, Oct 2014.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

yangseok.ki@samsung.com

	In-Storage Compute: an Ultimate Solution for Accelerating I/O-intensive Applications
	Slide Number 2
	Contributors
	Outline
	Data Processing Market
	I/O Performance Issue
	CPU-centric Computing Model (Von Neumann)
	Moving Data is Expensive!!
	Near Data Processing Technology
	Slide Number 10
	What is ISC (In-Storage Compute)?
	Why? IO Traffic
	Why? Coprocessor
	Why? Bandwidth Gap
	Why? Resource Utilization
	How? ISC Application Development Process
	ISC Dataflow Programming Model
	ISC Multiple Device Model
	Simple Key Value Store in ISC Programming
	ISC Runtime Framework
	Samsung ISC SSD Prototype
	Case Study 1: Data Analytics with MySQL
	Data Analytics Query
	3.6X TPC-H Query Processing Speed Up
	Case Study 2: Storage Compaction
	New LevelDB with Compaction Powered by ISC
	Up to 10X Throughput Improvement
	Take-Away Messages
	Reference
	Slide Number 30

