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« 2D NAND continues to drive lithographic minimum feature scaling — 1y/1z nm in volume production

 Floating gate scaling to 1z nm (~15nm) > industry wide transition to 3D NAND cell in 1H16 enabling path for
‘Effective Sub 10nm’ scaling

« Timing of 3D NAND implementation to Enterprise Storage will depend on 3D MLC/TLC Flash technology
yield, reliability maturity, bit cost reduction, combined with Controller/Flash management enablement in
2016-2017 timeframe

» TLC currently accounts for ~40% of industry output, anticipate to exceed 65% by 2018
« 3D TLC will drive continued bit cost reduction & opportunities for wider flash adaptation including enterprise storage

Flash Memory Summit 2015
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DRAM & Flash Scaling — Density Trends
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DRAM scaling at sub 20nm node for Flash scaling continues via 2D > 3D NAND
12/16Gbit — bit cost reduction vs transition — enabling 256Gb & higher
increased technology complexity & fab density MLC/TLC Flash

investment requirements
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Memory Bit Cost Curve vs Scaling
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Steep increase in Fab Capital Expenditure @ sub 20 nm — driven by immersion ArF tooling & low K1

lithography, multiple patterning overhead
Flash Bit cost reduction will continue at steep rate via 3D NAND scaling in 2016-2020 — 3D NAND vyield,

quality and reliability is key
DRAM $ per GB take down slope significantly flattened at 1x/1y/1z nm in 2016-2019
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2. Additional Staircase Contact adds process cost
3. Added Area for Decoder — WL decoder area needed to reduce
RC delay
4. Added Process cost for peripheral circuit integration
5. Bit cost reduction @ 64 - 100 layers will required vertical channel

etch profile, innovation in decoder/peripheral design /layout, F &
z-directional wordline-to-wordline pitch reduction

6. Fab wafer ramp-up, yield & quality maturity key in 3D NAND bit
cost. 3D NAND process specific Fab CaPex needed for initial
production, Fab thruput key factor for bit cost

Flash Memory Summit 2015
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3D NAND Design & Architecture Key Factors
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3D NAND Cell array architecture: Page, block, plane size & structure
Program & Read algorithms

X/Y and Z directional cell-to-cell interference

ECC requirements & error characteristics
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3D NAND P/E Cycling
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3D Charge Trap — Key Characteristics

1. Reduction in Cell-to-cell interference due to
lithographic cell spacing relaxation (~15 nm > 4x nm)

2. Charge Trap Thin Tunnel Oxide — less charge trap
build up caused by PE Cycling => tight Vit distribution

3. Enables faster programming speed due with 1 pass

programming algorithm

Flash Memory Summit 2015
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3D Charge Trap — Data Retention

« Fast initial charge loss due to shallow trapped electrons

« Data Retention fails - due to charge spreading across channel (Z-direction) and
charge loss thru thin tunnel oxide (X-direction)

« Understanding of High Temp & Low Temperature data retention mechanism
critical — degraded data retention characteristics at > 125C anticipated

« 3D NAND Floating gate cell expected to have an advantage in data retention but
with endurance characteristics tradeoffs
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(Bitlines removed for clarity)

Staircase Contacts
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Poly-51 Channels

High Aspect Ratio Channel Etch Profile (Distortion free, near vertical © angle) & ONO film
thickness control in z-direction

Issues at bottom gate has ‘ripple effect’ all the way up the channel

Staircase contacts from the Word-line drivers for each layer creates cell structure unique to
3D NAND — High A/R contact etch, alignment accuracy, contact resistance uniformity

Bit line contact @ top of channel — interface properties & alignment accuracy

3D NAND specific Defect control, metrology & methodologies needed

Wafer yield — Drive wafer to wafer, across wafer, die-to-die, intra-die variability reduction =>
critical for 3D NAND Bit cost and Enterprise Quality & Reliability
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3D NAND Cell/Process Architecture Challenges

« Wordline RC delay — more Wordline decoder area needed to relax large RC Loading

« Wordline capacitance increase (due to 3D NAND architecture) - Icc current increases

« Low cell current & variability due to poly-Si channel — innovations for high mobility channel
needed for continued scaling of 3D NAND layer count, Poly Si microstructure engineering

critical

 Random Telegraph Noise (RTN) — charge trap, carrier mobility fluctuation
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3D NAND allows fast programming speed due to 1 pass Programming algorithm — possible
with reduced Cell-to-Cell Interference

Dual/triple pages can be programmed simultaneously with less programming steps
compared to 2D NAND

Reduction in tPROG > Reduction in latency > Higher performance
BER reduction via elimination of Partial Page Programming/upper page read error scheme

2-pass Programming 1-pass Programming
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Program time & Energy Consumption

Energy Consumption
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3D NAND allows 1 pass Programming Algorithm => tPROG reduction
Potential for Energy Consumption reduction — via reduced tPROG

« Normalized Energy Consumption = Vcc x ICC2 x tPROG / Page size

« Possible ICC current increases due to 3D NAND architecture specifics

Potential for Reduction in Flash Operation power and Sequential Write Power

Efficiency => positive for OpEx related power/cooling costs
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3D NAND Technology — Implications to Enterprise Storage

Density
v 256Gb+ MLC/TLC Flash density with same footprint package

Reliability
v Driven by lower Cell-to-Cell Interference & Tighter V1 distribution with P/E cycling —
3D Charge Trap vs 3D Floating gate needs to be further evaluated/understood.
Flash characterization critical
v' Data Retention for 3D Charge Trap anticipated to worsen — need thorough
evaluation & understanding of mechanism over wide operational & storage
temperature range

Performance
v Faster tPROG due to 1 pass programming algorithm — due to reduced Cell-to-Cell
interference
v Dual/Triple pages simultaneous programming with less programming steps

Power Efficiency
v Potential Power reduction driven by tPROG reduction
v ICC current tradeoffs need to be understood for overall Power efficiency gains
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4 ‘V’s of Data — Key Considerations for Big Data

Rapidly declining Flash Bit Cost . Volume of data captured, stored,

(MLC/TLC) via 3D NAND scaling shared, and analyzed continue to
Optimize economic value of data ‘ ‘ Increase m

— fast analysis of more data in Raw capacity growth o
different formats . Greater storage density in the

«  OpEx benefits — Low power/ data center
cooling costs

» Less data center physical space
due to higher density flash
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Performance — data must be

Unstructured data — files, email, social analyzed faster > smarter

media consists >80% of all data decisions & maximize business
« Accommodate file & object storage value

represented by unstructured data — - Higher IOPS, lower latency

best suited for Flash storage needed

3D NAND critical to Enterprise Storage - continue to drive Flash bit cost
reduction, increases in Capacity, Reliability, Performance and Reduction in
power consumption

©-264518M Corporation
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3D NAND introduction and scaling — anticipate continued MLC/TLC bit cost reduction while driving Density
growth over the next 5+ years. Bit cost scaling will be determined by Si process, device and design
innovations focused on channel profile, vertical transistor, staircase process controls, decoder & peripheral
circuit complexity, and process uniformity

Timing of 3D NAND implementation to Enterprise Storage will depend on 3D MLC/TLC Flash technology
yield, reliability maturity, bit cost reduction, combined with Controller/Flash management enablement in
2016-2017 timeframe

TLC current accounts for ~40% of industry output, anticipate to exceed 65% by 2018
« 3D TLC will drive continued bit cost reduction & opportunities for wider flash adaptation including
enterprise storage

3D NAND cell architecture
» Relaxation of lithographic pitch reduces Cell-to-Cell interference & tighter Vt distribution =>
Endurance & Performance gain opportunities anticipated
« Data retention expected to be weaker 3D Charge Trap — need further understanding of data retention
at operating & storage temperatures

3D NAND Process Technology unique challenges — fab quality process controls critical

1 pass programming allows shorter tPROG => opportunity for performance gain & power consumption
reduction

3D NAND Technology critical for Enterprise Flash Storage - driving Flash bit cost reduction, increases in

Capacity, Reliability, and opportunity for Performance gain & OpEx benefits via Power consumption
reduction
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